SCHEDULE 1- TECHNICAL SPECIFICATIONS FOR INSTALLATION OF TOWERS AND MASTS

Figure 1 .1 Tower Types

Windflow Map for Nigeria (Metres/Sec)

Figure 1.2

i.

Notes on Figure 1.2

- map shows the average wind speeds
- ii. Wind loading for a structure is to be considered over the full length of the structure and is to be measured in Newton's per square metre (N/m^2) .
- *iii.* The basic wind speeds depicted in this map are measured at 10 metres above the ground.
- *iv.* These values increase with height and need to be so corrected when making computations.

The wind speeds shown in figure 1.2 above were measured from the stations listed in Table 1.1. Engineers who desire greater accuracy in their wind speed calculations are encouraged to use figure 1.2 in conjunction with Table 1.1.

	STATION NAME	LAT.	LONG.	STATE	ELEV.
S/N					
1	YELWA	10.53'N	04.45'E		244.0
				REDDI	
2	BIRNI KEBBI	12.28'N	04.13'E	KEBBI	220.0
3	SOKOTO	13.01'N	05.15'E	SOKOTO	350.8
4	GUSAU	12.10'N	06.42'E	ZAMFARA	463.9
5	KADUNA	10.36'N	07.27'E	KADUNA	645.4
6	KATSINA	13.01'N	07.41'E	KATSINA	517.6
7	ZARIA	11.06'N	07.41'E	KADUNA	110.9
8	KANO	12.03'N	08.12'E	KANO	472.5
9	BAUCHI	10.17'N	09.49'E	BAUCHI	609.7
10	NGURU	12.53'N	10.28'E	YOBE	343.1
11	POTISKUM	11.42'N	11.02'E	BORNO	414.8
12	MAIDUGURI	11.51'N	13.05'E	BORNO	353.8
13	ILORIN	08.29'N	04.35'E	KWARA	307.4
14	SHAKI	08.40'N	03.23'E	OYO	
15	BIDA	09.06'N	06.01'E	NIGER	144.3
16	MINNA	09.37'N	06.32'E	NIGER	256.4
17	ABUJA	09.15'N	07.00'E	FCT	343.1
18	JOS	09.52'N	08.54'E	PLATEAU	1780.0
19	IBI	08.11'N	09.45'E	TARABA	110.7
20	YOLA	09.14'N	12.28'E	ADAMAWA	186.1
21	ISEYIN	07.58'N	03.36'E	ΟΥΟ	330.0
22	IKEJA	06.35'N	03.20'E	LAGOS	39.4
23	OSHODI	06.30'N	03.23'E	LAGOS	19.0
	MET.AGRO				
24	LAGOS (HQ) ROOF	06.27'N	03.24'E	LAGOS	14.0

Table 1.1

25	LAGOS (MARINE)	06.26'N	03.25'E	LAGOS	2.0
26	IBADAN	07.26'N	03.54'E	OYO	227.2
27	IJEBU-ODE	06.50'N	03.56'E	OGUN	77.0
28	ABEOKUTA	07.10'N	03.20'E	OGUN	104.0
29	OSHOGBO	07.47'N	04.29'E	OSUN	302.0
30	ONDO	07.06'N	04.50'E	ONDO	287.3
31	BENIN	06.19'N	05.06'E	EDO	77.8
32	AKURE	07.17'N	05.18'E	ONDO	375.0
33	WARRI	05.31'N	05.44'E	DELTA	6.1
34	LOKOJA	07.47'N	06.44'E	KOGI	62.5
35	ONITSHA	06.09'N	06.47'E	ANAMBRA	67.0
36	PORT-HARCOURT	04.51'N	07.01'E	RIVERS	19.5
37	OWERRI	05.29'N	07.00'E	IMO	91.0
38	ENUGU	06.28'N	07.33'E	ENUGU	141.8
39	UYO	05.30'N	07.55'E	AKWA IBOM	38.0
40	CALABAR	04.58'N	08.21'E	CROSS RIVER	61.9
41	MAKURDI	07.44'N	08.32'E	BENUE	112.9
42	IKOM	05.58'N	08.42'E	CROSS RIVER	119.0
43	OGOJA	06.40'N	08.48'E	CROSS RIVER	117.0

 Table 1.2 – Meteorological Stations in Nigeria

Table 1.2 - Meteorological Stations in Nigeria

The above data obtained from the National Meteorological Services indicate that the highest recorded wind speed over a period of 20 years is 7 ms⁻¹, which translates to a mere 420 mhr⁻¹. However, wind gusts of the order of 55 km hr⁻¹ have been recorded infrequently. Since these data form our worst-case scenario, masts and towers in Nigeria shall be designed to withstand a minimum ground wind speed of 70 km hr⁻¹.

Structural types for self-supporting lattice

Figure 2.1 – Bracing Types

Members shall be made from solid rod, pipe or angles. Engineer must specify wall thickness if design is of pipes and sizes and thickness of legs if of angles.

Diagonal Spacing

Double K 1 Down

Double K2 Down Double K3, K3A, K4

K - Brace Down

K - Brace up

Figure 2.2

Members shall be made from solid rod, pipe or angles. Engineer must specify wall thickness if design is of pipes and sizes and thickness of legs if of angles

Double K

Members shall be made from solid rod, pipe or angles. Engineer must specify wall thickness if design is of pipes and sizes and thickness of legs if

of angles.

Face A

Double Slope-Bracing

Diagonal Up Z-Brace

Diagonal Down Z-Brace

Figure 2.4 *Members shall be made from solid rod, pipe or angles. Engineer must specify wall thickness if design is of pipes and sizes and thickness of* legs if of angles.

Members shall be made from solid rod, pipe or angles. Engineer must specify wall thickness if design is of pipes and sizes and thickness of legs it of angles.

Redundant Sub Horizontal

K 3 Down K 3 Up (opposite)

K 3A Down K 4 Up (Opposite)

Figure 2.6

Members shall be made from solid rod, pipe or angles. Engineer must specify wall thickness if design is of pipes and sizes and thickness of legs if of angles.

Figure 2.7

Members shall be made from solid rod, pipe or angles. Engineer must specify wall thickness if design is of pipes and sizes and thickness of legs if of angles.

Members shall be made from solid rod, pipe or angles.

Engineer must specify wall thickness if design is of pipes and sizes and thickness of legs if of angles.

X-braced, self-supporting, lattice design showing face width, slope change and tower height

This represents a generalized design of a 15 section, 6m length per section tower.

Loading considerations to be taken into account in the specification of bracing sizes, bracing configuration (double or single), bracing bolt sizes, leg size and type, face widths at top and base, etc are:-

- Wind speed to include gust factor if applicable
- Total anticipated antenna load
- Maximum Shearper leg
- Maximum uplift
 reaction
- Maximum compression

Figure 2.10

Superstructure of a 15 section X - Braced Steel Tower, showing antenna mounts. Tower can be designed and fabricated as a three or four legged self-support structure. New sections that are intended to result in higher towers shall be added below section 1 with the design philosophy as to face widths being maintained.

Figure 2.11 Superstructure of a 13 section X - Braced Steel Tower

Tower can be designed and fabricated as a three or four legged self-support structure. New sections that are intended to result in higher towers shall be added below section 1 and the design philosophy as to face widths maintained. 78 metre Tower

Figure 2.12 - Self Support Lattice Towers of different heights

Two towers of different heights illustrating the general relationships between lattice tower height, number of sections and the face widths at the top and bottom. Both towers are of identical design but have different heights Structural Design of a 12-section self-support tower in single or Z bracing. Face width decreases from base to top of the tower

Figure 2.13

A 12-section, single braced, lattice tower. Each section is tapered to produce an overall tapered structure. Additional sections, if the tower has to be higher shall be of greater face width than section 12 until the tower reaches required height.

Figure 2.14

Sections fit into each other with an overlap (d). Base diameter, section height, depth of overlap between sections and total mast height are all structural stability issues determined by the structural design engineer. For higher towers, additional sections are added below section 5 until the required height is reached but there must be corresponding increases in base width as the number of sections and consequently the height increases.

TOWER SCHEDULE								
Section	Spread	Dimension	Tower Legs**	Tower Braces	Bolts			
Number	Upper	Lower	36 KSI Yield STR	36 KSI YIELD STR	A 325 GRADE			
1 (Top)	30 cm	30 cm	5.0 cm ²	2.5cm x 2.5cm x 0.32cm	8mm			
2	30 cm	30 cm	5.0 cm ²	2.5cm x 2.5cm x 0.32cm	8mm			
3	30 cm	50 cm	5.0 cm ²	2.5cm x 2.5cm x 0.32cm	8mm			
4	50 cm	72 cm	5.0 cm ²	3.2cm x 3.2cm x 0.5cm	10mm			
5	72 cm	94 cm	5.0 cm ²	3.2cm x 3.2cm x 0.5cm	10mm			
6	94 cm	114 cm	5.0 cm ²	3.2cm x 3.2cm x 0.5cm	10mm			
7	114 cm	135 cm	5.75 cm ²	3.2cm x 3.2cm x 0.5cm	10mm			
8	135 cm	156 cm	5.75 cm ²	3.2cm x 3.2cm x 0.5cm	10mm			
9	156 cm	176 cm	5.75 cm ²	3.2cm x 3.2cm x 0.5cm	10mm			
10(Grnd)	176 cm	198 cm	5.75 cm ²	3.2cm x 3.2cm x 0.5cm	10mm			

**Cross-sectional area

Design Data of a Ten Section Light Duty Self-Supporting Tower

Table 2.1

	SECTION HEIGHTS AND WEIGHTS							
Section Number	Height	Legs	Braces	Lap Links	Total			
1	3.0 m	36 Kg	8.5 Kg	4.5 Kg	65 Kg			
2	3.0 m	36 Kg	8.5 Kg	4.5 Kg	65 Kg			
3	3.0 m	36 Kg	10 Kg	4.5 Kg	70 Kg			
4	3.0 m	36 Kg	17.7 Kg	4.5 Kg	101 Kg			
5	3.0 m	36 Kg	27.5 Kg	4.5 Kg	111 Kg			
6	3.0 m	36 Kg	29 Kg	4.5 Kg	127 Kg			
7	3.0 m	40 Kg	30 Kg	4.5 Kg	153 Kg			
8	3.0 m	40 Kg	33 Kg	4.5 Kg	162 Kg			
9	3.0 m	40 Kg	34 Kg	4.5 Kg	171 Kg			
10	3.0 m	40 Kg	37 Kg	N/A	216 Kg			

SUPERSTRUCTURE DESIGN AND LOADING								
HEIGHT ABOVE GROUND	WIND SPEED	ALLOWABLE DEAD WEIGHT PER SECTION	MAX COAX QTY/SIZE	MAX COAX 9m BELOW QTY/SIZE	WIND L	OAD TOP (M ²)	WIND LOAD TOP	9m BELOW (M²)
	Km/ hr	Kg.			FLAT	ROUND	FLAT	ROUND
30 m	110	90	3 / 25mm	3 / 25mm	0.9	1.4	1.1	1.7
	125	90	3 / 25mm		0.46	0.7		
24 m	110	135	3 / 25mm	6 / 25m	1.67	2.51	1.86	2.79
	125	135	3 / 25mm	6 / 25mm	0.70	1.05	0.88	1.32
	145	135	3 / 25mm	?	0.74	1.11	?	?
18 m	110	180	6 / 25mm	6 / 25mm	2.14	3.21	2.32	3.48
	125	180	6 / 25mm	6 / 25mm	1.11	1.67	1.25	1.88
	145	180	3 / 25mm	6 / 25mm	0.64	0.95	0.85	1.13
12 m	110	360	12 / 25mm	?	4.83	7.25	?	?
	125	360	12 / 25mm	?	3.35	5.30	?	?
	145	360	9 / 25mm	?	2.69	4.04	?	?

Table 2.3

FOUNDATION DESIGN AND LOADING

HEIGHT ABOVE GROUND	WIND SPEED Km / hr	MAX VERTICAL (KIPS)	MAX UPLIFT (KIPS)	MAX SHEAR/LEG (KIPS)	TOTAL SHEAR (KIPS)	AXIAL (KIPS)
30 m	145	23.0	19.0	2.12	3.50	2.34
24 m	145	22.0	18.2	1.92	3.42	2.09
18 m	145	17.0	14.7	1.40	2.50	1.82
12 m	145	24.1	22.4	1.73	3.30	1.52
		T -1-1				

Table 2.4

Below 145 ms⁻¹ wind speed; shear, vertical and uplift forces are negligible. All foundation designs shall be in accordance with maximum reaction loads indicated above. Modification of loading locations and equipment can be made provided reaction loads do not exceed indicated values.

Design Data of a Fifteen Section Medium Duty Self-Supporting Tower

Section	Spread	Dimension	Tower Legs**	Tower Braces	Bolts
Number	Upper	Lower	36 KSI Yield STR	36 KSI YIELD STR	A 325 GRADE
1	46 cm	46 cm	5.0 cm ²	3.2cm x 3.2cm x 0.5cm	10 mm
2	46 cm	46 cm	5.0 cm ²	3.2cm x 3.2cm x 0.5cm	10 mm
3	46 cm	76 cm	5.0 cm ²	3.2cm x 3.2cm x 0.5cm	10 mm
4	76 cm	1.04 m	5.75 cm ²	3.8cm x 3.8cm x 0.5cm	10 mm
5	1.04 m	1.32 m	5.75 cm ²	3.8cm x 3.8cm x 0.5cm	10 mm
6	1.32 m	1.6 m	5.75 cm ²	3.8cm x 3.8cm x 0.5cm	10 mm
7	1.6 m	1.88 m	9.30 cm ²	4.4cm x 4.4cm x 0.5cm	12 mm
8	1.88 m	2.16 m	9.30 cm ²	4.4cm x 4.4cm x 0.5cm	12 mm
9	2.16 m	2.43 m	9.30 cm ²	4.4cm x 4.4cm x 0.5cm	12 mm
10	2.43 m	2.72 m	10.8 cm ²	5cm x 5cm x 0.5cm	12 mm
11	2.72 m	3.0 m	10.8 cm ²	5cm x 5cm x 0.5cm	12 mm
12	3.0 m	3.27 m	10.8 cm ²	5cm x 5cm x 0.5cm	12 mm
13	3.27 m	3.56 m	16 cm ²	6.4cm x 6.4cm x 0.5cm	16 mm
14	3.56 m	3.84 m	16 cm ²	6.4cm x 6.4cm x 0.5cm	16 mm
15	3.84 m	4.11 m	16 cm ²	6.4cm x 6.4cm x 0.5cm	16 mm

SELF-SUPPORTING TOWER SCHEDULE

Table 2.5

		SECTION HEIGI	HTS AND WEIGHT	S	
Section Number	Height	Legs	Braces	Brace Plates	Total
1	3.0 m	36 Kg	25 Kg	N/A	65 Kg
2	3.0 m	36 Kg	25 Kg	N/A	65 Kg
3	3.0 m	36 Kg	29 Kg	N/A	70 Kg
4	3.0 m	40 Kg	57 Kg	N/A	102 Kg
5	3.0 m	40 Kg	67 Kg	N/A	112 Kg
6	3.0 m	40 Kg	78 Kg	N/A	127 Kg
7	3.0 m	65 Kg	79 Kg	N/A	153 Kg
8	3.0 m	65 Kg	88 Kg	N/A	162 Kg
9	3.0 m	65 Kg	98 kg	N/A	171 Kg
10	3.0 m	76 Kg	123 Kg	8.0 Kg	216 Kg
11	3.0 m	76 Kg	134 Kg	8.0 Kg	227 Kg
12	3.0 m	76 Kg	145 Kg	8.0 Kg	246 Kg
13	3.0 m	111 Kg	148 Kg	12.7 Kg	288 Kg
14	3.0 m	111 Kg	156 Kg	12.7 Kg	296 Kg
15	3.0 m	111 Kg	166 Kg	12.7 Kg	306 Kg

Table 2.6

		SUPERSTR	UCTURE	E DESIGN	N AND I		G	
HEIGHT	WIND SPEED	ALLOWABLE DEAD WEIGHT PER LEVEL	MAX COAX QTY/SIZE	MAX COAX 9m BELOW QTY/SIZE	WINI (S	D LOAD FOP Q. M)	WIND 9m BEL (SC	DLOAD OW TOP (). M)
	KPH	KGS.			FLAT	ROUND	FLAT	ROUND
	110	135	3 / 22 mm	3 / 22 mm	2.09	3.14	3.07	4.60
45 m	125	135	3 / 22 mm	3 / 22 mm	1.40	2.09	2.42	3.62
	145	135	3 / 22 mm	3 / 22 mm	0.37	0.56	0.56	0.84
	110	205	3 / 22 mm	3 / 22 mm	2.14	3.21	3.16	4.74
39 m	125	205	3 / 22 mm	3 / 22 mm	1.58	2.37	2.60	3.90
	145	205	3 / 22 mm	3 / 22 mm	1.02	1.53	1.30	1.95
	110	270	6 / 22 mm	6 / 22 mm	2.23	3.34	4.09	6.13
33 m	125	270	6 / 22 mm	6 / 22 mm	1.58	2.37	3.25	4.88
	145	270	6 / 22 mm	6 / 22 mm	1.20	1.81	2.32	3.48
	110	360	6 / 22 mm	6 / 22 mm	2.23	3.34	4.09	6.13
27 m	125	360	6 / 22 mm	6 / 22 mm	1.53	2.30	3.25	4.88
	145	360	6 / 22 mm	6 / 22 mm	1.02	1.53	2.32	3.48
	110	400	9 / 22 mm	?	2.14	3.21	?	?
21 m	125	400	9 / 22 mm	?	1.95	2.93	?	?
	145	400	9 / 22 mm	?	1.72	2.58	?	?
	110	400	9 / 22 mm	?	2.14	3.21	?	?
15 m	125	400	9 / 22 mm	?	1.49	2.23	?	?
	145	400	9 / 22 mm	?	1.11	1.62	?	?

~ • • . .

1

Table 2.7

TOWER FOUNDATION DESIGN & LOADING

TOWER HEIGHT	WIND SPEED	MAX VERTICAL	MAX UPLIFT	MAX SHEAR/LEG	TOTAL SHEAR	AXIAL
	KPH	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)
45 m	145	63.13	48.14	6.9	13.54	7.5
40 m	145	51	40	5.1	10	5.39
35 m	145	40	33	4.45	7	4.27
30 m	145	29.21	24.21	2.92	4.68	3.97
25 m	145	17.29	14.02	1.79	2.65	2.53
20 m	145	15.94	12.9	1.73	2.6	2.14

Table 2.8

Below 145 ms⁻¹ wind speed; shear, vertical and uplift forces are negligible. All foundation designs shall be in accordance with maximum reaction loads indicated above. Modification of loading locations and equipment can be made provided reaction loads do not exceed indicated values.

Footing Assembly Weight Table

Weight (Kg/m)	Weight x 12 (Kg/m)
43	17.16
1.43	17.16
1.43	17.16
2.23	26.76
2.40	28.8
2.40	28.8
1.61	19.32
3.06	36.72
3.02	36.24

Lap Link Weight Table

Weight (Kg/m)	Weight x 3 (Kg/m)
55.63	166.89
58.01	174.03
62.63	187.89
65.55	196.65

Table 2.10

STRUCTURAL DESIGN DATA FOR A TYPICAL LATTICE TOWER

Section	Height	Leg Size(cm)	Brace		
	m	Grade A500 steel	Configuration	Size (mm)	
1	6	20 Schedule 80	Double AngleA	90 x 80	
2	12	20 Schedule 80	Double AngleA	90 x 80	
3	18	20 Schedule 80	Single 2x	100 x 100 x 4	
4	24	20 Schedule 80	Single 2x	100 x 100 x 4	
5	30	15 Schedule 80	Single 2x	100 x 100 x 4	
6	36	15 Schedule 80	Single 2x	100 x 100 x 4	
7	42	13 Schedule 80	Single 3x	75 x 75 x 1.5	
8	48	13 Schedule 80	Single 3x	75 x 75 x 1.5	
9	54	13 Schedule 80	Single 3x	60 x 60 x 6	
10	60	8 Schedule 80	Single 3x	60 x 60 x 6	
11	66	8 Schedule 80	Single 4x	60 x 60 x 6	
12	72	6.5 Schedule80	Single 4x	50 x 50 x 5	
13	80	6.5 Schedule80	Single 3x	50 x 50 x 5	

Table 2.11

All brace connections shall be bolted and provided with locking pal nuts. Sections are in typical 6-metre lengths Leg strength minimum 46 KSI yield. Max Share/Leg: 40.11 KIPS Max Uplift: 288.26 KIPS Max Compression: 345.76 KIPS Design Wind Speed is 120 Km hr⁻¹

		100 mot	ro Configura	tion Lattica Tr	a wor	
Castian	Llaiobt		Te Configura	mon Lattice T	Jwei	
Section	Height	Leg Inickness	D	~~~	Deduc	dont
	(m)	(CM) 50 KSI	BI KO			
-	-		Bolt Size	Diag. Config.	Size (mm)	Size (cm)
1	6	16	(2) 20mm	Double A	90 x 75 x 6	6 x 6 x 60
2	12	16	(2) 20mm	Double A	90 x 75 x 6	6 x 6 x 60
3	18	16	(2) 20mm	Double A	90 x 75 x 6	6 x 6 x 60
4	24	16	(2) 20mm	Double A	90 x 75 x 6	6 x 6 x 60
5	30	13	22mm	Single 2A	10 x 10 x 6	6 x 6 x 60
6	36	13	22mm	Single 2A	10 x 10 x 6	6 x 6 x 60
7	42	13	22mm	Single 2A	10 x 10 x 6	6 x 6 x 60
8	48	13	22mm	Single 2A	75 x 75 x 8	6 x 6 x 60
9	54	10	22mm	Single 2A	75 x 75 x 8	6 x 6 x 60
10	60	10	20mm	Single 2A	75 x 75 x 8	6 x 6 x 60
11	66	9	20mm	Single 3A	75 x 75 x 8	6 x 6 x 60
12	72	7.5	20mm	Single 3A	60 x 60 x 600	6 x 6 x 60
13	78	7.5	20mm	Single 3A	60 x 60 x 600	6 x 6 x 60
14	84	5	16mm	Single 4X	50 x 50 x 6	-
15	90	5	16mm	Single 5X	25 SOLID	-
16	96	5	16mm	Single 1X	25 SOLID	-
			BRAG	CE		
					Internal	
					Triangle	
1	6				75 x 75 x 6	
2	12				75 x 75 x 6	
3	18				75 x 75 x 6	
4	24				75 x 75 x 6	

STRUCTURAL DESIGN DATA FOR A TYPICAL LATTICE TOWER

Table 2.12

- Sections are in typical 6 metre lengths
- All brace connections shall be bolted and provided with locking pal nuts.
- All X-Braces shall be center bolted.
- Structure is designed for a maximum wind speed of 160 Km hr⁻¹
- Total structure design weight (unloaded) is 38,000 Kgs
- Maximum design shear / Leg is 80 KIPS
- Total shear at the Base is 155 KIPS
- Maximum design uplift is 627 KIPS
- Maximum design Compression is 733 KIPS

Section	4	3	2	1
Length (m)	13.7	12	12	11.2
Number of Sides	18	18	18	18
Thickness (mm)	10	8	6.5	5.5
Lap splice / section overlap (m)		1.7	1.45	1.14
Top Dia (cm)	106	80	75	56
Bottom Dia (cm)	130	110	93	75
Grade of Steel	A572-65			
Weight (Kg)	8.4	5.3	3.5	2.3
Material Strength	80 ksi	80 ksi	65 ksi	65 ksi

Design details of a four section, 45 metre Monopole (Typical)

Table 2.13

Tower above is designed for a 100 Km hr⁻¹ basic wind

Section of a Typical Guyed three-legged Mast

(Single or Z bracing)

Figure 2.17

A four section guyed monopole illustrating the relationship between tower height (H) and the horizontal distance from tower base to the guy anchor (1/4 H). Tower can be installed in many sections. This design of masts is ideal for the installation of HF -SSB dipole antennas.

ATIE: 1

Figure 2.18 Details of parts of the guyed pole mast in figure 2.17 above

Assembly of Antenna support and Outrigger

Shows in detail, the antenna support outrigger shown in figure 2.17 above.

Figure 2.20

Examples of Non-Penetrating Roof Mounts These can be implemented where possible with mass or reinforced concrete bases.

NAMA / ICAO Lighting Regulation

Figure 2.21 Schematic representation of the ICAO / NAMA obstruction lighting regulations.

SECTION VIEWS – SHOWING SUBSTRUCTURE ARRANGEMENT (Raft Foundation)

Figure 2.22

This foundation type can be used for all types of towers. It is applied for individual legs for a three or four-legged structure. Type of soil and the overall dynamic loading determine the dimensions. These shall be determined for each particular site by the geo-technical engineer.

BASIC RAFT FOUNDATION DESIGN FOR TOWERS

Figure 2.23

All dimensions, reinforcement steel sizes and quantities shall be according to the engineer's design, which will be dependent on the soil characteristics, dead loading of mast, its height and worst case calculated wind loading

Drilled Pier Foundation Design for Towers in Swamps (Three Legged)

SECTION A - A .

Figure 2.24

Plan of a typical foundation type for unconsolidated soils.

All dimensions are to be specified by a geo-technical engineer and are strictly dependent on the site soil characteristics, expected maximum dynamic loads, shear stress, uplift and compression.

Typical Micro pile in an unconsolidated Formation

Figure 2.25 Section of drilled Pier Foundation

Foundation design for Self- Supporting Post Mast

Dimensions of X and Y are dependent on soil conditions, dead weight of mast and wind loading

.Square and level shuttering .Template laid across shuttering .Studding fitted .Infill of concrete

Figure 2.26

Basic Foundation Design - Four Legged Tower

Projection above concrete base

Mild Steel Base Plate

Figure 2.27 Design for lightweight mast in normal soil

Foundation design for one leg in a three or four legged tower configuration. This is a galvanised steel tower socket base for installation on a concrete foundation. Each corner of the base is provided with a clearance hole for studs that provide a levelling method. Typical values for a lightweight tower in a normal soil are as follows:

Concrete Depth	1.2 metre
Concrete Width	1.8 metre
Face Width	0.65 metre
Base Width	1. metre

TYPICAL ANCHOR ASSEMBLY

Figure 2.28

This is easily deployed in unconsolidated formations for guy anchors, in drilled pier and micro-pile foundations. They exist in a lot of configurations. Lengths can be varied according to the soil characteristics. Lengths are increased by the use of extensions.

Basic Foundation Design for a three-legged slim lattice Mast

All dimensions are to be specified by a geo-technical engineer and are strictly dependent on the site soil characteristics, expected maximum dynamic loads, shear stress, uplift and compression.

All dimensions are to be specified by a geo-technical engineer and are strictly dependent on the site soil characteristics, expected maximum dynamic loads, shear stress, uplift and compression. Typical values in normal soil for a 45-metre lightweight steel tower are:

Concrete Depth	1.2 metres
Concrete Width	1.8 metres
Face Width	0.57 metres
Base Width	1.0 metres

This design does not give room for leveling after concrete has been poured

Foundation Design for a Self –Support Monopole Tower

Section

Plan

Design basic wind speed is 100 Kmhr⁻¹ Plate thickness is 6 Plate grade is A36. Anchor Bolt Grade is A325 X. Yield Strength is 4 ksi. Bolt Length is a minimum of 1 metre Base Plate outer diam is 1.5 m Base plate inner diam is 1.1 m

Figure 2.31 Dimensions given above vary with the peculiarities of the monopole and the soil

Tapered Base, Guyed Tower - Grounding

Guyed Tower Leg Grounding

Figure 2.32

Earthing and lightning protection methods

Figure 2.33

TOWER EARTHING DESIGN - TYPICAL

Figure 2.34

Soil	Resistivity, ohm, cm
Marshy Ground	200 – 270
Loam and Clay	400 – 15,000
Chalk	6,000 -40,000
Sand	9,000 - 800,000
Peat	20,000
Sandy Gravel	30,000 -50,000
Rock	100,000

Table 2.14 – Resistivity Values for different Soil Types

Table 2.14 gives typical values, which can be used for computation but shall not serve as a substitute for actual measured values.

Air Terminal- Lighting spike **Figure 2.35**

Earthing Clamps

Typical clamps for installation of earth tapes

<u>U-Bolts</u>

Figure 3.2 Earth and lightning protection materials

Rod to Tape Coupling

Building in RodHoldfasts

Connector Clamps

Square Tape Clamp

Screw down Clamp

Plate Type Clamp

Installation Materials – Earthing and lightning protection

Figure 3.3

Earth Bars and Disconnecting Links

Insulator

Wooden base disconnecting link

6-way disconnecting link

Disconnecting link channel Iron base

Inspection Housing

Figure 3.4 These materials are used for earthing installation to make testing easy

Figure 3.5

These materials are used for earthing installation to make testing easy

Notes

- *i)* Conductor inspection housing shall be installed at test points to protect the earth rod and earth connections and make them available for testing.
- *ii)* It shall be made from high grade, heavy-duty polypropylene and ultra violet stabilized to prevent degradation by sunlight.
- *iii)* It shall be non-brittle.

Lightning Arrestor Installation Materials

Light Duty Saddle

Figure 3.6 Pointed Air rod and installation saddle

Copper Tapes – Can be Tin or lead covered

Flexible Copper braid

Figure 3.7 Flat Copper Tape and Flexible Copper Braid

Copper Tape

Connectors

Circular cable connector

Cable to Tape Junction Clamp

Cable To Cable Test Clamp

Figure 3.8 Cable connectors

Bi-Metallic Connectors

Metal Tape Clip

Non-Metallic Clips

Figure 3.9 *Cable and Tape clips*

Guy System Materials

Above: Thimble Left: U-Bolt Clip

Earth Screw Anchor

7 x 7 Galvanized Cable 7 x 19 Stainless Steel Cable

Turnbuckle

Guy Wire

Figure 3.10

Guy materials

Guying materials shall conform to the sizes, mechanical strengths and capacities shown below in Tables 3.1 (1-4)

Size & Grade	Working Load	Break Strength	Wt. / 100 strands
3.5mm x 7 x 7 Galvanised Steel	154 Kg	771 Kg	1.27 Kg
10mm x 7 x 19 Galvanised Steel	1306 Kg	6532 Kg	1.10 Kg
8mm x 7 x 19 Stainless Steel(304)	245 Kg	1089 Kg	2.27 Kg
5mm x 7 x 19 304 Stainless Steel(304)	336 Kg	1678 Kg	4.10 Kg
6.5mm x 7 x 19 Stainless Steel(304)	581 Kg	2903 Kg	5.00 Kg

Table 3.1 Guying Cable

Working Load (Kg)	Diameter & Take Up	Unit Wt. (Kg)
750	10mm X 15cm	0.45
1,000	12.5mm X 22cm	0.9
1,500	15mm X 30cm	1.8

Table 3.2 Turnbuckles

Turnbuckles shall be made from drop forged steel, be of hot dip galvanized Finish and have Eye and eye construction

Overall Length	Rod Dial. In.	Helix Diameter	Holding Power in Normal Soil	Unit Wt(Kg)
75 cm	12.5 mm	10 cm	1,135 Kg.	3.2
120 cm	16 mm	15 cm	1,815 Kg.	5.5
173 cm 17.5 mm 20 cm 5,000 Kg. 12				
12.5mm Link from earth anchor to turnbuckle. Hot dip galvanized finish.				

Table 3.3 Earth Screw Anchors

Description	Kgs. Per 100
3mm Galvanized Steel U-Bolt Clip	4.54
8mm Galvanized Steel U-Bolt Clip	8.16
6.5mm Galvanized Steel U-Bolt Clip	8.16
8mm Galvanized Steel U-Bolt Clip	13.6
10mm Galvanized Steel U-Bolt Clip	21.8
6.5mm Galvanized Heavy Duty Thimble	4.54
8mm Galvanized Heavy Duty Thimble	6.35
10mm Galvanized Heavy Duty Thimble	11.34

Table 3.4 U-Bolt Clips and Thimbles

Figures 3.11

Side Antenna Mount

Figure 3.12

SADDLE- BRACKET

Antenna Mount on Self-Support Tower

Figure 3.13

Figure 3.14

Antenna Mount on Self-Support Tower

Section View

Figure 3.15

Figure 3.16

Measurement of Tension of Guy

The Pulse Method

Figure 4.2

Relationship between Guy Tension at Anchor and at Mid-Guy

The Tangent Intercept Method

Figure 4.3

International Council on Non-Ionizing Radiation Protection (ICNIRP)

Table 6.2: Radiation level in E, H and S for Occupational Staff on site

Frequency Range (f)	Electric Field (E)	Magnetic Field (H)	Power Density (S) (E;H Fields)
	(V/m)	(A/m)	(mW/cm ²)
<1 Hz	—	163 x 10³	—
1 - 8 Hz	20,000	163 x 10³/f²	—
8 - 25 Hz	20,000	2.0 x 10 ⁴ /f	—
0.025 - 0.82 kHz	500/f	20/f	—
0.82 - 65 kHz	610	24.4	100; 22,445
0.065 - 1 MHz	610	1.6/f	100; 100/f ²
1 - 10	610/f	1.6/f	100/f ²
10 - 400 MHz	61	0.16	1.0
400 - 2,000 MHz	3f ^½	0.008f ¹ / ₂	f/400
2 - 300 GHz	137	0.36	5.0

Frequency Range (f)	Electric Field (E)	Magnetic Field (H)	Power Density (S) (E,H Fields)
	(V/m)	(A/m)	(mW/cm ²)
<1 Hz	_	3.2 x 10 ⁴	—
1 - 8 Hz	10,000	3.2 x 10 ⁴ /f ²	—
8 - 25 Hz	10,000	4000/f	—
0.025 - 0.8 kHz	250/f	4/f	—
0.8 - 3 kHz	250/f	5	—
3 -150 kHz	87	5	2.0; 995
0.15 - 1 MHz	87	0.73/f	2.0; 20/f ²
1 - 10	87/f ^½	0.73/f	2.0/f; 20/f ²
10 - 400 MHz	28	0.073	0.2
400 - 2,000 MHz	1.375f ^½	0.0037f ¹ / ₂	f/2000
2 - 300 GHz	61	0.16	1.0

Table 6.3: Radiation level in E, H and S for General Public

Eroquonov Pango	Maximum Current (ma)	
Frequency Range	Occupational	General Public
<2.5 kHz	1.0	0.5
2.5 - 100 kHz	0.4f	0.2/f
100 kHz - 110 MHz	40	20

Fraguanay Panga	Maximum Current (ma)	
Frequency Range	Occupational	General Public
10 - 110 MHz	100	45