SCHEDULE 1- TECHNICAL SPECIFICATIONS FOR INSTALLATION OF TOWERS AND MASTS

Self-su pporting

Figure 1.1 Tower Types

Windflow Map for Nigeria (Metres/Sec)

Figure 1.2

Notes on Figure 1.2
i. map shows the average wind speeds
ii. Wind loading for a structure is to be considered over the full length of the structure and is to be measured in Newton's per square metre ($\mathrm{N} / \mathrm{m}^{2}$).
iii. \quad The basic wind speeds depicted in this map are measured at 10 metres above the ground.
iv. These values increase with height and need to be socorrected when making computations.

The wind speeds shown in figure 1.2 above were measured from the stations listed in Table 1.1. Engineers who desire greater accuracy in their wind speed calculations are encouraged to use figure 1.2 in conjunction with Table 1.1.

Table 1.1

S/N	STATION NAME	LAT.	LONG.	STATE	ELEV.
1	YELWA	10.53 ' N	04.45’E	KEBBI	244.0
2	BIRNI KEBBI	$12.28{ }^{\prime} \mathrm{N}$	04.13'E	KEBBI	220.0
3	SOKOTO	13.01 'N	05.15'E	SOKOTO	350.8
4	GUSAU	$12.10^{\prime} \mathrm{N}$	06.42'E	ZAMFARA	463.9
5	KADUNA	10.36 ' N	07.27'E	KADUNA	645.4
6	KATSINA	13.01 ' N	07.41'E	KATSINA	517.6
7	ZARIA	11.06 '	07.41'E	KADUNA	110.9
8	KANO	12.03 ' N	08.12'E	KANO	472.5
9	BAUCHI	$10.17^{\prime} \mathrm{N}$	09.49'E	BAUCHI	609.7
10	NGURU	$12.53{ }^{\prime} \mathrm{N}$	10.28'E	YOBE	343.1
11	POTISKUM	11.42 '	11.02'E	BORNO	414.8
12	MAIDUGURI	11.51 'N	13.05'E	BORNO	353.8
13	ILORIN	08.29'N	04.35'E	KWARA	307.4
14	SHAKI	08.40 ' N	03.23'E	OYO	
15	BIDA	09.06 '	06.01'E	NIGER	144.3
16	MINNA	09.37 ' N	06.32'E	NIGER	256.4
17	ABUJA	$09.15^{\prime} \mathrm{N}$	07.00'E	FCT	343.1
18	JOS	09.52'N	08.54'E	PLATEAU	1780.0
19	IBI	$08.11^{\prime} \mathrm{N}$	09.45'E	TARABA	110.7
20	YOLA	09.14 'N	12.28'E	ADAMAWA	186.1
21	ISEYIN	07.58'N	03.36'E	OYO	330.0
22	IKEJA	06.35 ' N	03.20'E	LAGOS	39.4
23	OSHODI MET.AGRO	06.30 '	03.23'E	LAGOS	19.0
24	LAGOS (HQ) ROOF	06.27'N	03.24'E	LAGOS	14.0

25	LAGOS (MARINE)	$06.26^{\prime} \mathrm{N}$	$03.25^{\prime} \mathrm{E}$	LAGOS	2.0
26	IBADAN	$07.26^{\prime} \mathrm{N}$	$03.54^{\prime} \mathrm{E}$	OYO	227.2
27	IJEBU-ODE	$06.50^{\prime} \mathrm{N}$	$03.56^{\prime} \mathrm{E}$	OGUN	77.0
28	ABEOKUTA	$07.0^{\prime} \mathrm{N}$	$03.0^{\prime} \mathrm{E}$	OGUN	104.0
29	OSHOGBO	$07.47^{\prime} \mathrm{N}$	$04.29^{\prime} \mathrm{E}$	OSUN	302.0
30	ONDO	$07.06^{\prime} \mathrm{N}$	$04.50^{\prime} \mathrm{E}$	ONDO	287.3
31	BENIN	$06.19^{\prime} \mathrm{N}$	$05.06^{\prime} \mathrm{E}$	EDO	77.8
32	AKURE	$07.17^{\prime} \mathrm{N}$	$05.18^{\prime} \mathrm{E}$	ONDO	375.0
33	WARRI	$05.31^{\prime} \mathrm{N}$	$05.44^{\prime} \mathrm{E}$	DELTA	6.1
34	LOKOJA	$07.47^{\prime} \mathrm{N}$	$06.44^{\prime} \mathrm{E}$	KOGI	62.5
35	ONITSHA	$06.09^{\prime} \mathrm{N}$	$06.47^{\prime} \mathrm{E}$	ANAMBRA	67.0
36	PORT-HARCOURT	$04.51^{\prime} \mathrm{N}$	$07.01^{\prime} \mathrm{E}$	RIVERS	19.5
37	OWERRI	$05.29^{\prime} \mathrm{N}$	$07.00^{\prime} \mathrm{E}$	IMO	91.0
38	ENUGU	$06.28^{\prime} \mathrm{N}$	$07.33^{\prime} \mathrm{E}$	ENUGU	141.8
39	UYO	$05.30^{\prime} \mathrm{N}$	$07.55^{\prime} \mathrm{E}$	AKWA IBOM	38.0
40	CALABAR	$04.5 \mathbf{N}^{\prime} \mathrm{N}$	$08.21^{\prime} \mathrm{E}$	CROSS RIVER	61.9
41	MAKURDI	$07.44^{\prime} \mathrm{N}$	$08.32^{\prime} \mathrm{E}$	BENUE	112.9
42	IKOM	$05.58^{\prime} \mathrm{N}$	$08.42^{\prime} \mathrm{E}$	CROSS RIVER	119.0
43	OGOJA	$06.40^{\prime} \mathrm{N}$	$08.48^{\prime} \mathrm{E}$	CROSS RIVER	117.0

Table 1.2-Meteorological Stations in Nigeria

Table 1.2 - Meteorological Stations in Nigeria
The above data obtained from the National Meteorological Services indicate that the highest recorded wind speed over a period of 20 years is $7 \mathrm{~ms}^{-1}$, which translates to a mere $420 \mathrm{mhr}^{-1}$. However, wind gusts of the order of $55 \mathrm{~km} \mathrm{hr}^{-1}$ have been recorded infrequently. Since these data form our worst-case scenario, masts and towers in Nigeria shall be designed to withstand a minimum ground wind speed of $70 \mathrm{~km} \mathrm{hr}^{-1}$.

Structural types for self-supporting lattice

Single Bracing

Type
1
S

Type
1
X

S2
3

X-Bracing

K - Bracing

K3

X3

S

K4

Redund
ant diagonal Redundant

X6

Figure 2.1 - Bracing Types
Members shall be made from solid rod, pipe or angles.
Engineer must specify wall thickness if design is of pipes and sizes and thickness of
legs if of angles.

Diagonal Spacing

Double K2 Down
Double K3, K3A, K4

K - Brace Down

Double K 1 Down

Diamond

Double K

Z bracing

M - Bracing

Figure 2.3
Members shall be made from solid rod, pipe or angles.
Engineer must specify wall thickness if design is of pipes and sizes and thickness of legs if
of angles.

Face A
Double Slope-Bracing

Diagonal Up Z-Brace

Diagonal Down Z-Brace

Figure 2.4
Members shall be made from solid rod, pipe or angles.
Engineer must specify wall thickness if design is of pipes and sizes and thickness of
legs if of angles.

K1 Down K1 Up (Opposite)

K2 Down K 2 Up (Opposite)

Figure 2.5

Members shall be made from solid rod, pipe or angles. Engineer must specify wall thickness if design is of pipes and sizes and thickness of legs it of angles.

Figure 2.6
Members shall be made from solid rod, pipe or angles.
Engineer must specify wall thickness if design is of pipes and sizes and thickness of legs if of angles.

Figure 2.7
Members shall be made from solid rod, pipe or angles.
Engineer must specify wall thickness if design is of pipes and sizes and thickness of legs if of angles.

Figure 2.8 Portal Bracing
Members shall be made from solid rod, pipe or angles.

Engineer mustspecify wall thickness ifdesign is of pipes andsizes and thickness of legs if of angles.

Figure. 2.9
X- braced, self-supporting, lattice design showing face width, slope change and tower height

This represents a generalized design of a 15 section, 6 m length per section tower.

Loading considerations to be taken into account in the specification of bracing sizes, bracing configuration (double or single), bracing boltsizes, legsize and type, face widths at top and base, etc are:-

- Wind speed to include gust factor if applicable
- Total anticipated antenna load
- Maximum Shear per leg
- Maximum uplift reaction
- Maximum compression

Figure 2.10
Superstructure of a 15 section X - Braced Steel Tower, showing antenna mounts. Tower can be designed and fabricated as a three or four legged self-support structure. New sections that are intended to result in higher towers shall be added below section 1 with the design philosophy as to face widths being maintained.

Generalized prototype design of a 13 section, 6 m lengthspersectiontower.

Loading considerations to be taken into account in the specification of bracing sizes, bracing configuration (double or single), bracing boltsizes, legsize andtype, face widths attop and base, etc are:-

- Wind speed to includegustfactor if applicable
- Total anticipated antenna load
- Maximum Shear per leg
- Maximumuplift reaction
- Maximum compression

Figure 2.11
Superstructure of a 13 section X - Braced Steel Tower
Tower can be designed and fabricated as a three or four legged self-support structure. New sections that are intended to result in higher towers shall be added below section 1 and the design philosophy as to face widths maintained. 78 metre Tower

Figure 2.12 - Self Support Lattice Towers of different heights
Two towers of different heights illustrating the general relationships between lattice tower height, number of sections and the face widths at the top and bottom. Both towers are of identical design but have different heights

Structural Design of a 12-section self-support tower in single or Z bracing.
Face width decreases from base to top of the tower

Figure 2.13
A 12-section, single braced, lattice tower. Each section is tapered to produce an overall tapered structure. Additional sections, if the tower has to be higher shall be of greater face width than section 12 until the tower reaches required height.

Base Plate

Figure 2.14
Sections fit into each other with an overlap (d). Base diameter, section height, depth of overlap between sections and total mast height are all structural stability issues determined by the structural design engineer. For higher towers, additional sections are added below section 5 until the required height is reached but there must be corresponding increases in base width as the number of sections and consequently the height increases.

TOWER SCHEDULE

Section Number	Tower Legs		Tower Braces	Bolts	
	Upper	Lower		36 KSI YIELD STR	A 325 GRADE
1 (Top)	30 cm	30 cm	$5.0 \mathrm{~cm}^{2}$	$2.5 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 0.32 \mathrm{~cm}$	8 mm
2	30 cm	30 cm	$5.0 \mathrm{~cm}^{2}$	$2.5 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 0.32 \mathrm{~cm}$	8 mm
3	30 cm	50 cm	$5.0 \mathrm{~cm}^{2}$	$2.5 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 0.32 \mathrm{~cm}$	8 mm
4	50 cm	72 cm	$5.0 \mathrm{~cm}^{2}$	$3.2 \mathrm{~cm} \times 3.2 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	10 mm
5	72 cm	94 cm	$5.0 \mathrm{~cm}^{2}$	$3.2 \mathrm{~cm} \times 3.2 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	10 mm
6	94 cm	114 cm	$5.0 \mathrm{~cm}^{2}$	$3.2 \mathrm{~cm} \times 3.2 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	10 mm
7	114 cm	135 cm	$5.75 \mathrm{~cm}^{2}$	$3.2 \mathrm{~cm} \times 3.2 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	10 mm
8	135 cm	156 cm	$5.75 \mathrm{~cm}^{2}$	$3.2 \mathrm{~cm} \times 3.2 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	10 mm
9	156 cm	176 cm	$5.75 \mathrm{~cm}^{2}$	$3.2 \mathrm{~cm} \times 3.2 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	10 mm
$10(\mathrm{Grnd})$	176 cm	198 cm	$5.75 \mathrm{~cm}^{2}$	$3.2 \mathrm{~cm} \times 3.2 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	10 mm

**Cross-sectional area
Design Data of a Ten Section Light Duty Self-Supporting Tower
Table 2.1

SECTION HEIGHTS AND WEIGHTS

Section Number	Height	Legs	Braces	Lap Links	Total
1	3.0 m	36 Kg	8.5 Kg	4.5 Kg	65 Kg
2	3.0 m	36 Kg	8.5 Kg	4.5 Kg	65 Kg
3	3.0 m	36 Kg	10 Kg	4.5 Kg	70 Kg
4	3.0 m	36 Kg	17.7 Kg	4.5 Kg	101 Kg
5	3.0 m	36 Kg	27.5 Kg	4.5 Kg	111 Kg
6	3.0 m	36 Kg	29 Kg	4.5 Kg	127 Kg
7	3.0 m	40 Kg	30 Kg	4.5 Kg	153 Kg
8	3.0 m	40 Kg	33 Kg	4.5 Kg	162 Kg
9	3.0 m	40 Kg	34 Kg	4.5 Kg	171 Kg
10	3.0 m	40 Kg	37 Kg	N / A	216 Kg

Table 2.2

SUPERSTRUCTURE DESIGN AND LOADING

HEIGHT ABOVE GROUND	WIND SPEED	ALLOWABLE DEAD WEIGHT PER SECTION	MAX COAX QTY/SIZE	MAX COAX 9m BELOW QTY/SIZE	WIND LOAD TOP $\left(\mathrm{M}^{2}\right)$		$\begin{gathered} \text { WIND LOAD 9m BELOW } \\ \text { TOP }\left(\mathrm{M}^{2}\right) \end{gathered}$	
	Km/ hr	Kg .			FLAT	ROUND	FLAT	ROUND
30 m	110	90	3 / 25mm	3 / 25mm	0.9	1.4	1.1	1.7
	125	90	3 / 25mm		0.46	0.7		
24 m	110	135	$3 / 25 \mathrm{~mm}$	6 / 25m	1.67	2.51	1.86	2.79
	125	135	3 / 25mm	6 / 25mm	0.70	1.05	0.88	1.32
	145	135	3 / 25mm	?	0.74	1.11	?	?
18 m	110	180	6 / 25mm	$6 / 25 \mathrm{~mm}$	2.14	3.21	2.32	3.48
	125	180	6 / 25mm	$6 / 25 \mathrm{~mm}$	1.11	1.67	1.25	1.88
	145	180	3 / 25mm	$6 / 25 \mathrm{~mm}$	0.64	0.95	0.85	1.13
12 m	110	360	12 / 25mm	?	4.83	7.25	?	?
	125	360	12 / 25mm	?	3.35	5.30	?	?
	145	360	$9 / 25 \mathrm{~mm}$?	2.69	4.04	?	?

Table 2.3

FOUNDATION DESIGN AND LOADING

HEIGHT ABOVE GROUND	WIND SPEED Km /hr	MAX VERTICAL (KIPS)	MAX UPLIFT (KIPS)	MAX SHEAR/LEG (KIPS)	TOTAL SHEAR (KIPS)	AXIAL (KIPS)
30 m	145	23.0	19.0	2.12	3.50	2.34
	145	22.0	18.2	1.92	3.42	2.09
	18 m	145	17.0	14.7	1.40	2.50

Table 2.4
Below $145 \mathrm{~ms}^{-1}$ wind speed; shear, vertical and uplift forces are negligible. All foundation designs shall be in accordance with maximum reaction loads indicated above. Modification of loading locations and equipment can be made provided reaction loads do not exceed indicated values.

Design Data of a Fifteen Section Medium Duty Self-Supporting Tower

SELF-SUPPORTING TOWER SCHEDULE

Section Number	Spread Dimension		Tower Legs** 36 KSI Yield STR	Tower Braces 36 KSI YIELD STR	Bolts A 325 GRADE
	Upper	Lower			
1	46 cm	46 cm	$5.0 \mathrm{~cm}^{2}$	$3.2 \mathrm{~cm} \times 3.2 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	10 mm
2	46 cm	46 cm	$5.0 \mathrm{~cm}^{2}$	$3.2 \mathrm{~cm} \times 3.2 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	10 mm
3	46 cm	76 cm	$5.0 \mathrm{~cm}^{2}$	$3.2 \mathrm{~cm} \times 3.2 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	10 mm
4	76 cm	1.04 m	$5.75 \mathrm{~cm}^{2}$	$3.8 \mathrm{~cm} \times 3.8 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	10 mm
5	1.04 m	1.32 m	$5.75 \mathrm{~cm}^{2}$	$3.8 \mathrm{~cm} \times 3.8 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	10 mm
6	1.32 m	1.6 m	$5.75 \mathrm{~cm}^{2}$	$3.8 \mathrm{~cm} \times 3.8 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	10 mm
7	1.6 m	1.88 m	$9.30 \mathrm{~cm}^{2}$	$4.4 \mathrm{~cm} \times 4.4 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	12 mm
8	1.88 m	2.16 m	$9.30 \mathrm{~cm}^{2}$	$4.4 \mathrm{~cm} \times 4.4 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	12 mm
9	2.16 m	2.43 m	$9.30 \mathrm{~cm}^{2}$	$4.4 \mathrm{~cm} \times 4.4 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	12 mm
10	2.43 m	2.72 m	$10.8 \mathrm{~cm}^{2}$	$5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	12 mm
11	2.72 m	3.0 m	$10.8 \mathrm{~cm}^{2}$	$5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	12 mm
12	3.0 m	3.27 m	$10.8 \mathrm{~cm}^{2}$	$5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	12 mm
13	3.27 m	3.56 m	$16 \mathrm{~cm}^{2}$	$6.4 \mathrm{~cm} \times 6.4 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	16 mm
14	3.56 m	3.84 m	$16 \mathrm{~cm}^{2}$	$6.4 \mathrm{~cm} \times 6.4 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	16 mm
15	3.84 m	4.11 m	$16 \mathrm{~cm}^{2}$	$6.4 \mathrm{~cm} \times 6.4 \mathrm{~cm} \times 0.5 \mathrm{~cm}$	16 mm

Table 2.5

SECTION HEIGHTS AND WEIGHTS

Section Number	Height	Legs	Braces	Brace Plates	Total
1	3.0 m	36 Kg	25 Kg	N / A	65 Kg
2	3.0 m	36 Kg	25 Kg	N / A	65 Kg
3	3.0 m	36 Kg	29 Kg	N / A	70 Kg
4	3.0 m	40 Kg	57 Kg	N / A	102 Kg
5	3.0 m	40 Kg	67 Kg	N / A	112 Kg
6	3.0 m	40 Kg	78 Kg	N / A	127 Kg
7	3.0 m	65 Kg	79 Kg	N / A	153 Kg
8	3.0 m	65 Kg	88 Kg	N / A	162 Kg
9	3.0 m	65 Kg	98 kg	$\mathrm{~N} / \mathrm{A}$	171 Kg
10	3.0 m	76 Kg	123 Kg	8.0 Kg	216 Kg
11	3.0 m	76 Kg	134 Kg	8.0 Kg	227 Kg
12	3.0 m	76 Kg	145 Kg	8.0 Kg	246 Kg
13	3.0 m	111 Kg	148 Kg	12.7 Kg	288 Kg
14	3.0 m	111 Kg	156 Kg	12.7 Kg	296 Kg
15	3.0 m	111 Kg	166 Kg	12.7 Kg	306 Kg

Table 2.6

SUPERSTRUCTURE DESIGN AND LOADING								
HEIGHT	WIND SPEED KPH	ALLOWABLE DEAD WEIGHT PER LEVEL KGS.	max COAX QTY/SIZE	MAX COAX 9m BELOW QTY/SIZE	$\begin{gathered} \hline \text { WIND LOAD } \\ \text { TOP } \\ \text { (SQ.M) } \\ \hline \end{gathered}$		$\begin{aligned} & \text { WIND LOAD } \\ & 9 \mathrm{~m} \text { BELOW TOP } \\ & \text { (SQ. M) } \end{aligned}$	
					FLAT	ROUND	FLAT	ROUND
45 m	110	135	$3 / 22 \mathrm{~mm}$	$3 / 22 \mathrm{~mm}$	2.09	3.14	3.07	4.60
	125	135	$3 / 22 \mathrm{~mm}$	$3 / 22 \mathrm{~mm}$	1.40	2.09	2.42	3.62
	145	135	$3 / 22 \mathrm{~mm}$	$3 / 22 \mathrm{~mm}$	0.37	0.56	0.56	0.84
39 m	110	205	$3 / 22 \mathrm{~mm}$	$3 / 22 \mathrm{~mm}$	2.14	3.21	3.16	4.74
	125	205	$3 / 22 \mathrm{~mm}$	$3 / 22 \mathrm{~mm}$	1.58	2.37	2.60	3.90
	145	205	$3 / 22 \mathrm{~mm}$	$3 / 22 \mathrm{~mm}$	1.02	1.53	1.30	1.95
33 m	110	270	$6 / 22 \mathrm{~mm}$	$6 / 22 \mathrm{~mm}$	2.23	3.34	4.09	6.13
	125	270	$6 / 22 \mathrm{~mm}$	$6 / 22 \mathrm{~mm}$	1.58	2.37	3.25	4.88
	145	270	$6 / 22 \mathrm{~mm}$	$6 / 22 \mathrm{~mm}$	1.20	1.81	2.32	3.48
27 m	110	360	$6 / 22 \mathrm{~mm}$	$6 / 22 \mathrm{~mm}$	2.23	3.34	4.09	6.13
	125	360	$6 / 22 \mathrm{~mm}$	$6 / 22 \mathrm{~mm}$	1.53	2.30	3.25	4.88
	145	360	$6 / 22 \mathrm{~mm}$	$6 / 22 \mathrm{~mm}$	1.02	1.53	2.32	3.48
	110	400	$9 / 22 \mathrm{~mm}$?	2.14	3.21	?	?
21 m	125	400	$9 / 22 \mathrm{~mm}$?	1.95	2.93	?	?
	145	400	$9 / 22 \mathrm{~mm}$?	1.72	2.58	?	?
	110	400	$9 / 22 \mathrm{~mm}$?	2.14	3.21	?	?
15 m	125	400	$9 / 22 \mathrm{~mm}$?	1.49	2.23	?	?
	145	400	$9 / 22 \mathrm{~mm}$?	1.11	1.62	?	?

Table 2.7

TOWER FOUNDATION DESIGN \& LOADING

TOWER HEIGHT	WIND SPEED	MAX VERTICAL	MAX UPLIFT	MAX SHEAR/LEG	TOTAL SHEAR	AXIAL
	KPH	(KIPS)	(KIPS)	(KIPS)	(KIPS)	(KIPS)
45 m	145	63.13	48.14	6.9	13.54	7.5
40 m	145	51	40	5.1	10	5.39
	145	40	33	4.45	7	4.27
30 m						
	145	29.21	24.21	2.92	4.68	3.97
25 m	145	17.29	14.02	1.79	2.65	2.53
20 m	145	15.94	12.9	1.73	2.6	2.14

Table 2.8

Below $145 \mathrm{~ms}^{-1}$ wind speed; shear, vertical and uplift forces are negligible.
All foundation designs shall be in accordance with maximum reaction loads indicated above. Modification of loading locations and equipment can be made provided reaction
loads do not exceed indicated values.

FOOTING ASSEMBLY
3 Required Per Tower
Footing Assembly Weight Table

Weight $(\mathrm{Kg} / \mathrm{m})$	Weight $\times 12$ $(\mathrm{Kg} / \mathrm{m})$
43	17.16
1.43	17.16
1.43	17.16
2.23	26.76
2.40	28.8
2.40	28.8
1.61	19.32
3.06	36.72
3.02	36.24

Table 2.9

12 REQD PER CONNECTION

Lap Link Weight Table

Weight $(\mathrm{Kg} / \mathrm{m})$	Weight $\times 3$ $(\mathrm{Kg} / \mathrm{m})$
55.63	166.89
58.01	174.03
62.63	187.89
65.55	196.65

Table 2.10

STRUCTURAL DESIGN DATA FOR A TYPICAL LATTICE TOWER

80 metre Tower (Pipe) Configuration				
Section	Height	Leg Size(cm)	Brace	
	m	Grade A500 steel	Configuration	Size (mm)
1	6	20 Schedule 80	Double AngleA	90×80
2	12	20 Schedule 80	Double AngleA	90×80
3	18	20 Schedule 80	Single 2x	$100 \times 100 \times 4$
4	24	20 Schedule 80	Single 2x	$100 \times 100 \times 4$
5	30	15 Schedule 80	Single 2x	$100 \times 100 \times 4$
6	36	15 Schedule 80	Single 2x	$100 \times 100 \times 4$
7	42	13 Schedule 80	Single 3x	$75 \times 75 \times 1.5$
8	48	13 Schedule 80	Single 3x	$75 \times 75 \times 1.5$
9	54	13 Schedule 80	Single 3x	$60 \times 60 \times 6$
10	60	8 Schedule 80	Single 3x	$60 \times 60 \times 6$
11	66	8 Schedule 80	Single 4x	$60 \times 60 \times 6$
12	72	6.5 Schedule80	Single 4x	$50 \times 50 \times 5$
13	80	6.5 Schedule80	Single 3x	$50 \times 50 \times 5$

Table 2.11
All brace connections shall be bolted and provided with locking pal nuts. Sections are in typical 6-metre lengths Leg strength minimum 46 KSI yield.
Max Share/Leg: 40.11 KIPS
Max Uplift: 288.26 KIPS
Max Compression: 345.76 KIPS
Design Wind Speed is $120 \mathrm{Km} \mathrm{hr}^{-1}$

STRUCTURAL DESIGN DATA FOR A TYPICAL LATTICE TOWER

100 metre Configuration Lattice Tower						
Section	Height(m)	Leg Thickness (cm) 50 KSI	Brace		Redundant	
			Bolt Size	Diag. Config.	Size (mm)	Size (cm)
1	6	16	(2) 20 mm	Double A	$90 \times 75 \times 6$	$6 \times 6 \times 60$
2	12	16	(2) 20 mm	Double A	$90 \times 75 \times 6$	$6 \times 6 \times 60$
3	18	16	(2) 20 mm	Double A	$90 \times 75 \times 6$	$6 \times 6 \times 60$
4	24	16	(2) 20 mm	Double A	$90 \times 75 \times 6$	$6 \times 6 \times 60$
5	30	13	22 mm	Single 2A	$10 \times 10 \times 6$	$6 \times 6 \times 60$
6	36	13	22mm	Single 2A	$10 \times 10 \times 6$	$6 \times 6 \times 60$
7	42	13	22mm	Single 2A	$10 \times 10 \times 6$	$6 \times 6 \times 60$
8	48	13	22mm	Single 2A	$75 \times 75 \times 8$	$6 \times 6 \times 60$
9	54	10	22mm	Single 2A	$75 \times 75 \times 8$	$6 \times 6 \times 60$
10	60	10	20mm	Single 2A	$75 \times 75 \times 8$	$6 \times 6 \times 60$
11	66	9	20mm	Single 3A	$75 \times 75 \times 8$	$6 \times 6 \times 60$
12	72	7.5	20mm	Single 3A	$60 \times 60 \times 600$	$6 \times 6 \times 60$
13	78	7.5	20 mm	Single 3A	$60 \times 60 \times 600$	$6 \times 6 \times 60$
14	84	5	16 mm	Single 4X	$50 \times 50 \times 6$	-
15	90	5	16 mm	Single 5X	25 SOLID	-
16	96	5	16 mm	Single 1X	25 SOLID	-
BRACE						
					Internal Triangle	
1	6				$75 \times 75 \times 6$	
2	12				$75 \times 75 \times 6$	
3	18				$75 \times 75 \times 6$	
4	24				$75 \times 75 \times 6$	

Table 2.12

- Sections are in typical 6 metre lengths
- All brace connections shall be bolted and provided with locking pal nuts.
- All X-Braces shall be center bolted.
- Structure is designed for a maximum wind speed of $160 \mathrm{Km} \mathrm{hr}^{-1}$
- Total structure design weight (unloaded) is 38,000 Kgs
- Maximum design shear / Leg is 80 KIPS
- Total shear at the Base is 155 KIPS
- Maximum design uplift is 627 KIPS
- Maximum design Compression is 733 KIPS

Design details of a four section, 45 metre Monopole (Typical)

Section	4	3	2	1
Length (m)	13.7	12	12	11.2
Number of Sides	18	18	18	18
Thickness (mm)	10	8	6.5	5.5
Lap splice / section overlap (m)		1.7	1.45	1.14
Top Dia (cm)	106	80	75	56
Bottom Dia (cm)	130	110	93	75
Grade of Steel	A572-65			
Weight (Kg)	8.4	5.3	3.5	2.3
Material Strength	80 ksi	80 ksi	65 ksi	65 ksi

Table 2.13
Tower above is designed for a $100 \mathrm{Km} \mathrm{hr}^{-1}$ basic wind

Section of a Typical Guyed three-legged Mast
(Single or Z bracing)

Figure 2.16

N-section Guyed Pole Mast

Figure 2.17

A four section guyed monopole illustrating the relationship between towerheight (H) and the horizontaldistance fromtowerbase to the guy anchor
(1/4 H). Tower can be installed in many sections.
This design of masts is ideal for the installation of HF -SSB dipole antennas.

Triangular Guy Wire support Fits into the top portion of the Mast

Galvanised stake for attachment of buckles Used for Guy tension fine tuning

Figure 2.18
Details of parts of the guyed pole mast in figure 2.17 above

Assembly of Antenna support and Outrigger

Attach the D shackle.
Pull outrigger section back.
Insert split pin

Figure 2.19

Shows in detail, the antenna support outrigger shown in figure 2.17 above.

Figure 2.20
Examples of Non-Penetrating Roof Mounts
These can be implemented where possible with mass or reinforced concrete bases.

NAMA / ICAO Lighting Regulation

Figure 2.21
Schematic representation of the ICAO / NAMA obstruction lighting regulations.

SECTION VIEWS - SHOWING SUBSTRUCTURE ARRANGEMENT (Raft Foundation)

FOUNDATION PLAN

SECTION THROUGH FOUNDATION
Figure 2.22

This foundation type can be used for all types of towers. It is applied for individual legs for a three or four-legged structure. Type of soil and the overall dynamic loading determine the dimensions. These shall be determined for each particular site by the geo-technical engineer.

BASICRAFTFOUNDATIONDESIGNFOR TOWERS

Plan View

Figure 2.23
All dimensions, reinforcement steel sizes and quantities shall be according to the engineer's design, which will be dependent on the soil characteristics, dead loading of mast, its height and worst case calculated wind loading

Drilled Pier Foundation Design for Towers in Swamps

 (Three Legged)

SECTION A - A .

Figure 2.24
Plan of a typical foundation type for unconsolidated soils.
All dimensions are to be specified by a geo-technical engineer and are strictly dependent on the site soil characteristics, expected maximum dynamic loads, shear stress, uplift and compression.

Typical Micro pile in an unconsolidated Formation

Figure 2.25
Section of drilled Pier Foundation

Foundation design for Self- Supporting Post Mast

Infill between base and plate (concrete or epoxy)

4 no. studding assembly are used on a post mast

Dimensions of X and Y are dependent on soil conditions, dead weight of mast and wind loading

.Square and level shuttering
.Template laid across
shuttering
.Studding fitted
.Infill of concrete

Figure 2.26

Basic Foundation Design - Four Legged Tower

Projection above concrete base

SECTION

Studding Details

Mild Steel Base Plate
Figure 2.27
Design for lightweight mast in normal soil
Foundation design for one leg in a three or four legged tower configuration.
This is a galvanised steel tower socket base for installation on a concrete foundation. Each corner of the base is provided with a clearance hole for studs that provide a levelling method. Typical values for a lightweight tower in a normal soil are as follows:

Concrete Depth	1.2 metre
Concrete Width	1.8 metre
Face Width	0.65 metre
Base Width	1. metre

TYPICAL ANCHOR ASSEMBLY

Figure 2.28

This is easily deployed in unconsolidated formations for guy anchors, in drilled pier and micro-pile foundations. They exist in a lot of configurations.
Lengths can be varied according to the soil characteristics. Lengths are increased by the use of extensions.

Basic Foundation Design for a three-legged slim lattice Mast

Plan View
Figure 2.29

All dimensions are to be specified by a geo-technical engineer and are strictly dependent on the site soil characteristics, expected maximum dynamic loads, shear stress, uplift and compression.
 ELEVATION VIEW - section AA

Figure 2.30
Tower Foundation usingmicropiles

All dimensions are to be specified by a geo-technical engineer and are strictly dependent on the site soil characteristics, expected maximum dynamic loads, shear stress, uplift and compression. Typical values in normal soil for a 45-metre lightweight steel tower are:

Concrete Depth	1.2 metres
Concrete Width	1.8 metres
Face Width	0.57 metres
Base Width	1.0 metres

This design does not give room for leveling after concrete has been poured

Foundation Design for a Self -Support Monopole Tower

Section

Plan

Design basic wind speed is $100 \mathrm{Kmhr}^{-1}$ Plate thickness is 6 Plate grade is A36.

Anchor Bolt Grade is A325 X.
Yield Strength is 4 ksi .
Bolt Length is a minimum of 1 metre
Base Plate outer diam is 1.5 m
Base plate inner diam is 1.1 m

Figure 2.31
Dimensions given above vary with the peculiarities of the monopole and the soil

ALTERNATE WAYS OF GROUNDING AT GUY - ANCHORS
Figure 2.32

Earthing and lightning protection methods

Figure 2.33

TOWER EARTHING DESIGN - TYPICAL
Figure 2.34

Soil	Resistivity, ohm, cm
Marshy Ground	$200-270$
Loam and Clay	$400-15,000$
Chalk	$6,000-40,000$
Sand	$9,000-800,000$
Peat	20,000
Sandy Gravel	$30,000-50,000$
Rock	100,000

Table 2.14 - Resistivity Values for different Soil Types

Table 2.14 givestypical values, which can be usedforcomputation butshall notserve as a substitute for actual measured values.

Air Terminal- Lighting spike
Figure 2.35

Earthing Clamps

U-Bolts
Typical clamps for installation of earth tapes

Figure 3.1

Multi-Point Airterminal Brackets

ElevationRods

Figure 3.2
Earth and lightning protection materials

Rod to Tape Coupling

Building in RodHoldfasts

Connector Clamps

Square Tape Clamp

Oblong Box Clamp ${ }_{7}$

Screw downClamp

Plate Type Clamp

Installation Materials - Earthing and lightning protection

Figure 3.3

Insulator
Wooden base disconnecting link

Disconnecting link channel Iron base
Inspection Housing

Figure 3.4
These materials are used for earthing installation to make testing easy

Figure 3.5
These materials are used for earthing installation to make testing easy Notes
i) Conductor inspection housing shall be installed at test points to protect the earth rod and earth connections and make them available for testing.
ii) It shall be made from high grade, heavy-duty polypropylene and ultra violet stabilized to prevent degradation by sunlight.
iii) It shall be non-brittle.

Lightning Arrestor Installation Materials

Figure 3.6
Pointed Air rod and installation saddle

Copper Tapes - Can be Tin or lead covered

Figure 3.7
Flat Copper Tape and Flexible Copper Braid

Connectors

Circular cable connector

Cable to Tape Junction Clamp

Figure 3.8
Cable connectors

Bi -Metallic Connectors

MetalTapeClip

Non-Metallic Clips

Figure 3.9
Cable and Tape clips

Guy System Materials

Turnbuckle
Guy Wire

Figure 3.10

Guy materials

Guying materials shall conform to the sizes, mechanical strengths and capacities shown below in Tables 3.1 (1-4)

Size \& Grade	Working Load	Break Strength	Wt. / 100 strands
$3.5 \mathrm{~mm} \times 7 \times 7$ Galvanised Steel	154 Kg	771 Kg	1.27 Kg
$10 \mathrm{~mm} \times 7 \times 19$ Galvanised Steel	1306 Kg	6532 Kg	1.10 Kg
$8 \mathrm{~mm} \times 7 \times 19$ Stainless Steel (304)	245 Kg	1089 Kg	2.27 Kg
$5 \mathrm{~mm} \times 7 \times 19304$ Stainless Steel (304)	336 Kg	1678 Kg	4.10 Kg
$6.5 \mathrm{~mm} \times 7 \times 19$ Stainless Steel (304)	581 Kg	2903 Kg	5.00 Kg

Table 3.1 Guying Cable

Working Load (Kg)	Diameter \& Take Up	Unit Wt. (Kg)
750	$10 \mathrm{~mm} \times 15 \mathrm{~cm}$	0.45
1,000	$12.5 \mathrm{~mm} \times 22 \mathrm{~cm}$	0.9
1,500	$15 \mathrm{~mm} \mathrm{X} \mathrm{30cm}$	1.8

Table 3.2 Turnbuckles
Turnbuckles shall be made from drop forged steel, be of hot dipgalvanized Finish and have Eye and eye construction

Overall Length	Rod Dial. In.	Helix Diameter	Holding Power in Normal Soil	Unit Wt(Kg)
75 cm	12.5 mm	10 cm	$1,135 \mathrm{Kg}$.	3.2
120 cm	16 mm	15 cm	$1,815 \mathrm{Kg}$.	5.5
173 cm	17.5 mm	20 cm	$5,000 \mathrm{Kg}$.	12
12.5 mm Link from earth anchor to turnbuckle. Hot dip galvanized finish.				

Table 3.3 Earth Screw Anchors

Description	Kgs. Per 100
3mm Galvanized Steel U-Bolt Clip	4.54
8mm Galvanized Steel U-Bolt Clip	8.16
6.5 mm Galvanized Steel U-Bolt Clip	8.16
8mm Galvanized Steel U-Bolt Clip	13.6
10mm Galvanized Steel U-Bolt Clip	21.8
6.5mm Galvanized Heavy Duty Thimble	4.54
8mm Galvanized Heavy Duty Thimble	6.35
10mm Galvanized Heavy Duty Thimble	11.34

Table 3.4 U-Bolt Clips and Thimbles

Some basic designs

Side Antenna

Figures 3.11

Side Antenna Mount

Figure 3.12
SADDLE- BRACKET

Antenna Mount on Self-Support Tower

Figure 3.13

Figure 3.14

Antenna Mount on Self-Support Tower

Plan View

Section View

Figure 3.15

Figure 3.16

Figure 4.1

Measurement of Tension of Guy

The Pulse Method

Figure 4.2

Relationship between Guy Tension at Anchor and at Mid-Guy

The Tangent Intercept Method

Figure 4.3

Table 6.1: Radiation level in $\mathrm{mW} / \mathrm{cm} 2$ of body weight

International Council on Non-lonizing
 Radiation Protection (ICNIRP)

Table 6.2: Radiation level in E, H and S for Occupational Staff on site

Frequency Range (f)	Electric Field (E)	Magnetic Field (H)	Power Density $(\mathrm{S})(\mathrm{E} ; \mathrm{H}$ Fields $)$
$<1 \mathrm{~Hz} / \mathrm{m})$	$(\mathrm{A} / \mathrm{m})$	$\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	
$1-8 \mathrm{~Hz}$	-	163×10^{3}	-
$8-25 \mathrm{~Hz}$	20,000	$163 \times 10^{3 / \mathrm{f}^{2}}$	-
$0.025-0.82 \mathrm{kHz}$	20,000	$2.0 \times 10^{4} / \mathrm{f}$	-
$0.82-65 \mathrm{kHz}$	$500 / \mathrm{f}$	$20 / \mathrm{f}$	-
$0.065-1 \mathrm{MHz}$	610	24.4	$100 ; 22,445$
$1-10$	610	$1.6 / \mathrm{f}$	$100 ; 100 / \mathrm{f}^{2}$
$10-400 \mathrm{MHz}$	$610 / \mathrm{f}$	$1.6 / \mathrm{f}$	$100 / \mathrm{f}^{2}$
$400-2,000 \mathrm{MHz}$	61	0.16	1.0
$2-300 \mathrm{GHz}$	$3 \mathrm{f}^{1 / 2}$	137	$0.008 \mathrm{f}^{1 / 2}$

Table 6.3: Radiation level in E, H and S for General Public

Frequency Range (f)	Electric Field (E)	Magnetic Field (H)	Power Density (S) (E,H Fields)
$<1 \mathrm{~Hz}$	-	$(\mathrm{A} / \mathrm{m})$	$\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$
$1-8 \mathrm{~Hz}$	10,000	$3.2 \times 10^{4 / \mathrm{f}^{2}}$	-
$8-25 \mathrm{~Hz}$	10,000	$4000 / \mathrm{f}$	-
$0.025-0.8 \mathrm{kHz}$	$250 / \mathrm{f}$	$4 / \mathrm{f}$	-
$0.8-3 \mathrm{kHz}$	$250 / \mathrm{f}$	5	-
$3-150 \mathrm{kHz}$	87	5	-
$0.15-1 \mathrm{MHz}$	87	$0.73 / \mathrm{f}$	$2.0 ; 995$
$1-10$	$87 / \mathrm{f}^{1 / 2}$	$0.73 / \mathrm{f}$	$2.0 ; 20 / \mathrm{f}^{2}$
$10-400 \mathrm{MHz}$	28	0.073	$2.0 / \mathrm{f} ; 20 / \mathrm{f}^{2}$
$400-2,000 \mathrm{MHz}$	$1.375 \mathrm{f}^{1 / 2}$	$0.0037 \mathrm{f}^{\mathrm{f} / 2}$	0.2
$2-300 \mathrm{GHz}$	61	0.16	$\mathrm{f} / 2000$

Frequency Range	Maximum Current (ma)	
	Occupational	General Public
$<2.5 \mathrm{kHz}$	1.0	0.5
$2.5-100 \mathrm{kHz}$	0.4 f	$0.2 / \mathrm{f}$
$100 \mathrm{kHz}-110 \mathrm{MHz}$	40	20

Frequency Range	Maximum Current (ma)	
	Occupational	General Public
$10-110 \mathrm{MHz}$	100	45

