(REVIEWED) **ANALYSIS OF RESULTS** The project titled: Design and construction of a Power line communications (PLC) modem for domestic LAN. (STAGE 4)

Observation raised	Status	Action taken
Section 1.1 (Introduction)	Amended as	Paraphrased
	recommended by	
	technical review	
Section 1.2 (Table 1)	Amended as	Abbreviations and units
	recommended by	corrected
	technical review	
Section 2.2 (Table 2)	Amended as	Maximum data rate added
	recommended by	
	technical review	
Section 3.1	Amended as	Values of F_c retaken again and
	recommended by	updated correctly
	technical review	
Section 3.3.1	Amended as	Test time was extended and
	recommended by	reported that the module can
	technical review	function for as long as it is
		powered but experiences
		intermittent disconnection based
		on channel conditions)
		Figure 6:- Amended under flow
		chart page 18
Section 3.4	Amended as	Error control will affect
	recommended by	the throughput positively
	technical review with	• Megabits per second
	additional comments	(Mbps) is used
		to describe the speed at
		which digital data
		travels from one point to

		another. The capacity of
		a connection is referred
		to as it's bandwidth.
		Bandwidth is measured
		in bits per second and
		one Megabit per second
		is 1,000,000 bits per
		second.
	•	Table 14 :- When the
		module was connected
		to the internet, the
		receiver was able to
		access the internet
		despite the lost datagram
		but at a lower speed. The
		module was able to
		achieve a speed of
		between 1-5Mbps
		despite the lost data.
		These modules can also
		be designed pair with
		more than one module
		and hence the lost
		packets are routed to
		other terminals for other
		devices applications.
		at frees upprovidents.
	-	Table 20 has been
	•	updated as
		recommended y

		technical review
Section 4.1	Readings re-taken to	The Analyzer reported the SNR
	address technical reviewer	value of 39dB (Fig 25) but
	observation	another analyzer is being
		required to validate the reading
General comment	Adaptive modulation	The module encoder used The
		module support robust OFDM
		mode modulation 200Mbps
		(homeplug AV specification
		and IEEE1901 standard) PHY
		rate and it change its speed
		(modulation rate) as conditions
		in the radio network change.
		Interference from outside
		sources, such as changes in the
		environment (temperature, tree
		foliage, moving objects) all
		effect radio coverage.

1.1 Introduction

The project titled: Design and construction of a Power line communications (PLC) modem for domestic LAN.

PLC technology has provided an alternative means of data networking for in-home networking, in-building internet access, home networking, multimedia, and triple-play services by using the existing indoor powerline grid for networking and internet access has a number of advantages: no additional wiring is required, any electrical outlet can easily be converted to an access point by simply plugging in the PLC equipment, no complicated settings are usually required, and high speed and reliable communication can be provided at rates comparable to wireless LAN systems.

Power line communications (PLC) have been an active research area for many years, and it is still the case, mainly because they present economic and technical natural advantages for a wide range of applications using the existing electrical grid as transmission medium.

PLC is a promising broadband access technology. In this transmission mode, multimedia service signals, including high-speed data, voice, and video, are transmitted over low-voltage power lines.

PLC has such advantages as the power line is under the full jurisdiction of the power sector and easily managed; it can connect to any measurement and control point; signals can be transmitted through power lines, obviating the need to erect special lines and provides cost economy eliminating the use of additional wiring for LAN connectivity.

1.2 Recap of Stages Of Research

The recap of stages of the research is presented in Table 1

Table 1:-Summary of project stages

Stages	Synopsis	Observations/Conclusion
Noise characteristics	Modelling the noise	Detection of white noise,
	characteristics in	colored and impulse
	Nigeria domestic	noise
	power supply	
Modulation scheme	Determine the best	OFDM modulation
	modulation scheme to	scheme
	mitigate the effect of	
	noisy electrical	
	channel	
Design of PLC modem	Design a modem that	Circuit diagram, Layout
	transmit between	and fabrication achieved
	1Mbps-5Mbps	successfully

2.1 Further Design evaluation

In other to ensure effective data transmission and circuit protection and coupling. More details is given below.

2.2 OFDM Encoder Module (L200V)

Table 2: -Properties of the OFDM encoder module

Parameter	Value
Range	300 Meters powerlines
Frequency	The working frequency ranged from 2-30MHz
Maximum data rate	200Mbps
Other parameters	Working Frequency:2-30MHz
	RF Sensitivity: -66 dBm
	Max output power:6 dBm
Power consumption	< 2W
Modulation scheme	OFDM

2.3 Power line coupling

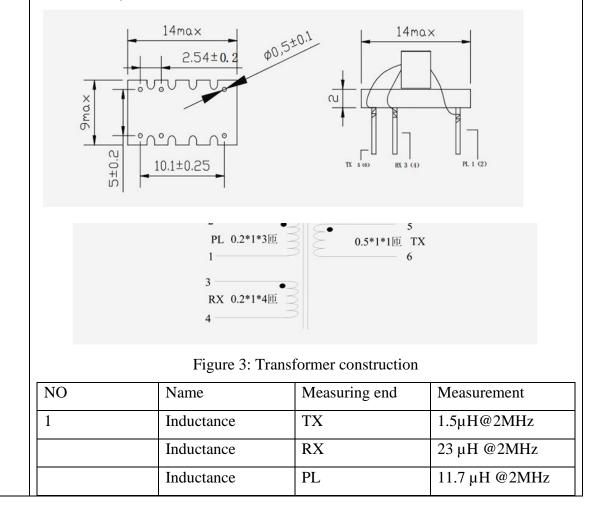
The coupling to the power line requires some passive components in addition to the active filtering stage. It includes the DC decoupling capacitor C, the line transformer T, the power inductor L, and safety capacitor.

- 1. Filters.
- 2. Surge Protector.
- 3. ESD Suppressor (Ethernet 10/100/1000 Base T).
- 4. Coupling transformer.

Table 3: Details of Filters and transient voltage suppressors

Item	Details		
Filters	The Filter operating in reception mode provides an efficient rejection of the 50 Hz		
	signal (high-pass) and anti-aliasing (low-pass) for the digital filter. It is important to		
	keep in mind that the filter is able to detect the fc component of the carrier, but also		
	the fc components located around the sampling frequency (fosc / 2) and its		
	multiples.		
	A low-pass filter is a filter that passes signals with a frequency lower than a		
	selected cutoff frequency and attenuates signals with frequencies higher than the		
	cutoff frequency. The exact frequency response of the filter depends on		
	the filter design.		
	Image: display state Image: display state Image: display state Ima		
	$f_c = \frac{1}{2\pi RC} \tag{1}$		
	Using equation (1)		
	R=0.47Ω		
	C=0.01µf with high voltage tolerance of 500V. (C must be an X2 type capacitor,		
	suited for 250 V AC line voltage)		
	F=3.39MHz		
Surge	There is need for transient overvoltage protection with significantly reduced		

protector	capacitance in for High-Speed Line Protections. The capacitance is lowered by	
protector	integrating a compensating diode in series. This integrated solution offers ESD	
	protection for high-speed interfaces such as communication systems, computers,	
	and computer peripherals.	
	The SL05: ESD / Surge Protector as selected.	
	• TVS Diode in Series with a Compensating Diode Offers < 5 pF Capacitance	
	• Peak Power Rating of 300 Watts, 8 x 20 μ s	
	• Bi–Direction Protection can be achieved by using two devices	
ESD	GBLCO8 is an ESD Suppressor. The ESD protection device using gap	
Suppressor	discharge. ESD suppressor protects Electric devices from ESD by utilizing the	
(Ethernet	ability to decrease its resistance value rapidly when high voltage is applied to ESD	
-	Suppressor. A TVS diode (ESD protection diode) is a kind of Zener diode. It is	
10/100/10	a diode that is mainly used for static electricity (ESD) countermeasures. It protects	
00 Base T)	integrated circuits and others from high-voltage ESD entering from a USB line etc.	
	BIDIRECTIONAL	
	Figure 2: ESD Suppressor	
Isolation	For PLC systems where the operating frequency may be up to 500 kHz isolation	
transforme	transformers based on offer excellent transmission characteristics, high robustness	
r	against EMC interferences and safe galvanic insulation. The data from the encoder	
	must be isolated from the mains . transmission transformer is used to achieve multi-	
	mode feed network function of the main components.	


It plays a power synthesist role of power distribution. It has good high frequency characteristics and bandwidth characteristics and used in radio frequency electronics circuits.

Additional functions of the transformer is.

- i. To achieve broadband impedance matching.
- ii. To achieve balanced and unbalance conversion.
- iii. Power synthesis and power distribution.

The transmitter is coupled to the line via a capacitive coupler (to eliminate the DC or AC mains signal) and a transformer to provide galvanic isolation. Furthermore, impedance matching has to be implemented to maximize the signal transfer into the power line. Matching networks were considered in the PLC literature showing benefits in terms of an increase of the received signal power.

2.2.4.1 Transformer construction

	2	DC resistance	ТХ	6MΩ
	The transformer			
Transient	Transients are tem	porary spikes or surg	es in voltage or curr	ent that can potentially
Voltage	impact circuits in ways ranging from minor glitches to catastrophic failure. A			
Suppressor	voltage transient can be anywhere from a few millivolts to thousands of volts, and			
S	they can last from nanoseconds to hundreds of milliseconds. Some transients are			
	repetitive, such as those caused by inductive ringing in a motor, while other			
	transients are more sporadic, such as ESD events. Current transients can be caused,			
	for example, by inrush current. The FB120R/FB120 device used in the design is a			
	transient voltage suppressor.			

2.4 Impedance matching

The reason for impedance matching is whereas the input impedance of the module, Z_{IN} , must be conjugately matched to that of the signal source, Z_S , is to guarantee maximum power transmission between the signal source and the receiver through the transmission lines. In the absence of this, there will be signal reflection. This means that a portion of the electrical signal will be reflected at the interface between the portions with varying impedances as it travels through the circuit. Impedance matching between PLC modems and power line networks is generally accomplished with a series of passive lumped elements, such as transformers, capacitors, and inductors. The coupling transformers, which consist of a transformer and a capacitor, were used as PLC couplers for coupling, band-pass filtering, and impedance matching. The coupling capacitor (C) resonant with the leakage inductance (*L*) of the transformer functions as a band pass filter to allow the communication signal to pass through while filtering out band noise (including the main voltage). The terminal impedance is 50Ω while the powerline impedance varies with length and frequency according to the formula.

 $|Z_{P}| = \omega L.l \,\Omega$

Where:

 Z_p is powerline impedance.

L is inductance.

l is length of powerline (between 1 to 300m).

And because length will vary in a LAN scenario The impedance matching in this module is automatic and dynamic to a length of \leq 300.

2.5 Prototype

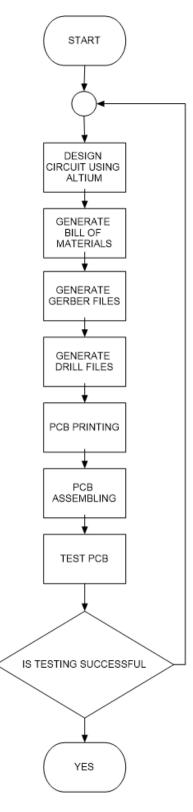


Figure 4: Prototyping the module flow chart

Figure 5: The prototype (PCB, without transformer, with transformer)

SECTION THREE

Evaluation of the Power Line Communication modules in Home LAN

3.1 Testing the Modules.

Differential mode coupling, which incorporates the live wire as one terminal and the neutral wire as another, is used for coupling the signal to the power line and decoupling from the power line. The coupling circuits are utilized to pair the modulated carrier signal onto and off the power line while maintaining the 50Hz insulation level. At the transmitting end the PLC modem and bidirectional coupling circuits turn the information into digital data packets that are digitally modulated with a higher oscillating frequency of 3.39MHz and carrier frequency centered around 13-70KHz. (Figure 23) The flow chart Figure 6 shows the steps in testing the modules.

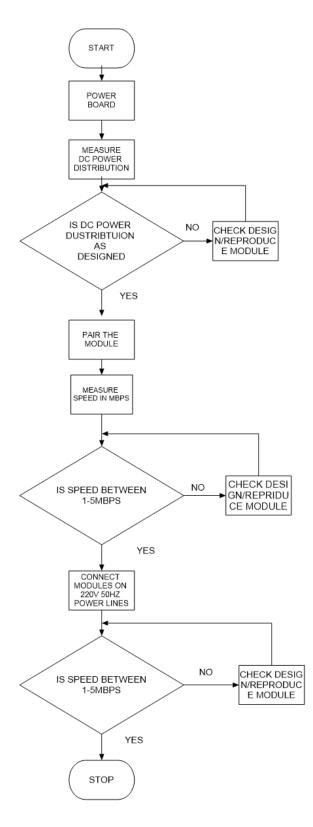


Figure 6: Flow chart of testing

All power compnent on the board must receive power as expected before testing can continue. There must be 100% power test success before the condition is satified.

3.2 Electrical supply to board

The electrical distribution to the modules are shown in Table 4.

Table 4: The electrical distribution to the modules

	Minimum value	Typical value	Maximum value	Unit
12V	11.5	12	12.85	V
3.3V	3.15	3.3	3.45	V
Operating current	125	130	145	mA

3.3 Measurement Setup

- 1. Iperf3 tool
- 2. Device Under Test (PLC Modules).
- 3. Spectrum analyzer.
- 4. 4G Airtel broadband modem.
- 5. Domestic appliances.
- 6. CAT 5e cable.

3.3.1 Measurement area

Measurements were made in a 120m-square-foot apartment that is fed by a single-phase power installation in a seven-unit building that is part of the residential power distribution network and an Office Plaza. A laptop computer (client) was linked to an electrical wall outlet in room B, which is adjacent room A, and a laptop computer (server) was attached to an electrical wall outlet in room A. The two powerline modems were used to establish communication between the two computers. Actual throughput, jitter, and packet loss are assessed for various sending data rates (offered load). The highest transmission rate targeted was 50Mbps, but the module can

target up to 100Mbps data rate. The time ranges from 60 seconds to 1200 seconds per test (The module can function for as long as it is powered but experienced intermittent disconnection based on channel conditions)

Testing time extended to 1200 seconds

[4] 870.00-880.00 sec 7.38 MBytes 6.19 Mbits/sec
[4] 880.00-890.01 sec 7.75 MBytes 6.50 Mbits/sec
[4] 890.01-900.01 sec 8.00 MBytes 6.71 Mbits/sec
[4] 900.01-910.00 sec 7.00 MBytes 5.88 Mbits/sec
[4] 910.00-920.00 sec 8.38 MBytes 7.02 Mbits/sec
[4] 920.00-930.00 sec 7.62 MBytes 6.39 Mbits/sec
[4] 930.00-940.01 sec 8.38 MBytes 7.02 Mbits/sec
[4] 940.01-950.01 sec 7.25 MBytes 6.08 Mbits/sec
[4] 950.01-960.01 sec 7.62 MBytes 6.39 Mbits/sec
[4] 960.01-970.00 sec 7.25 MBytes 6.09 Mbits/sec
[4] 970.00-980.00 sec 6.88 MBytes 5.77 Mbits/sec
[4] 980.00-990.00 sec 8.12 MBytes 6.82 Mbits/sec
[4] 990.00-1000.00 sec 8.12 MBytes 6.82 Mbits/sec
[4] 1000.00-1010.00 sec 7.12 MBytes 5.98 Mbits/sec
[4] 1010.00-1020.00 sec 8.00 MBytes 6.71 Mbits/sec
[4] 1020.00-1030.00 sec 8.12 MBytes 6.82 Mbits/sec
[4] 1030.00-1040.00 sec 7.12 MBytes 5.98 Mbits/sec
[4] 1040.00-1050.01 sec 6.75 MBytes 5.66 Mbits/sec
[4] 1050.01-1060.00 sec 8.00 MBytes 6.72 Mbits/sec
[4] 1060.00-1070.01 sec 8.25 MBytes 6.92 Mbits/sec
[4] 1070.01-1080.00 sec 8.88 MBytes 7.45 Mbits/sec
[4] 1080.00-1090.00 sec 8.38 MBytes 7.03 Mbits/sec
[4] 1090.00-1100.00 sec 7.25 MBytes 6.08 Mbits/sec
[4] 1100.00-1110.00 sec 7.88 MBytes 6.61 Mbits/sec
[4] 1110.00-1120.00 sec 7.38 MBytes 6.19 Mbits/sec

[4] 1120.00-1130.01 sec 7.75 MBytes 6.50 Mbits/sec
[4] 1130.01-1140.00 sec 7.62 MBytes 6.40 Mbits/sec
[4] 1140.00-1150.00 sec 6.88 MBytes 5.77 Mbits/sec
[4] 1150.00-1160.00 sec 7.88 MBytes 6.61 Mbits/sec
[4] 1160.00-1170.00 sec 7.38 MBytes 6.19 Mbits/sec
[4] 1170.00-1180.00 sec 8.38 MBytes 7.03 Mbits/sec
[4] 1180.00-1190.00 sec 7.25 MBytes 6.08 Mbits/sec
[4] 1190.00-1200.00 sec 8.38 MBytes 7.02 Mbits/sec
[4] 1200.00-1210.00 sec 4.50 MBytes 3.78 Mbits/sec

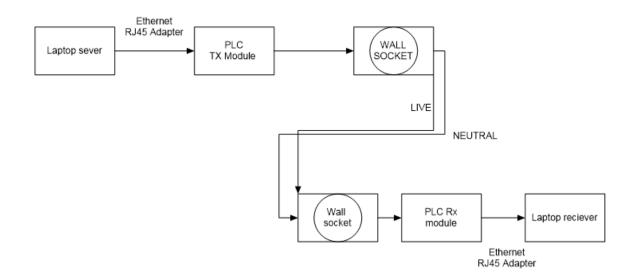


Figure 7: Measurement setup

Various home appliances active at the time of measurements are shown in Figure 8

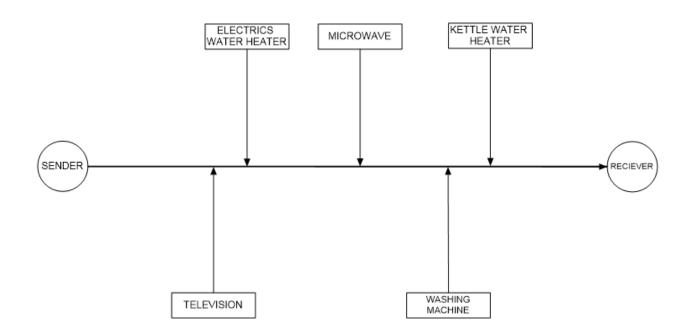


Figure 8: Setup with home appliances

The total TEST datagram sent is given below.

Table 5: The total TEST datagram sent is given below.

Specified bandwidth (Mbps)	Total average datagram sent
50	7600
10	1500
5	762
1	190

3.4 (3.2) Test Scenario 1

Module were paired and pinged to check the direct-to-direct connection as shown in Figure 9

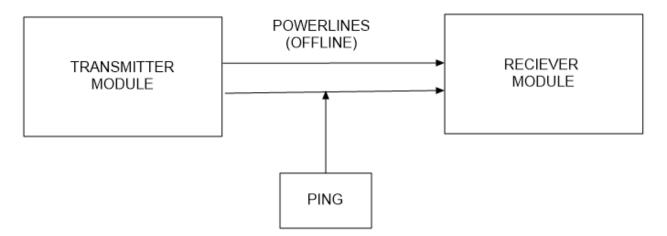



Figure 9: Ping network setup

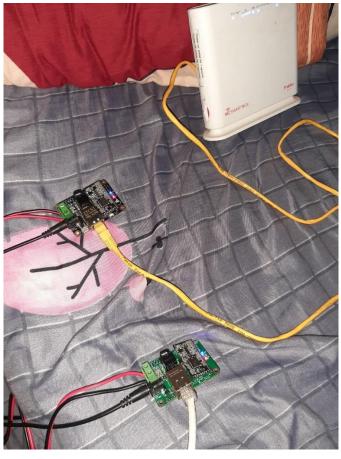


Figure 10: Module powered and connected to LAN.

3.5(3.3) Test Scenario 2

In the test scenrio 2 the modules were connected in the same house but about 150 meter apart using the electrical power lines with LIVE 220V, 50Hz supply. The transmitter was connected at the sitting room and the reciever was connected in the bedroom. The Airtel 4G smartbox broadband modem was connected to the transmitter and the reciever paired successfully but at a lower speed. A simplfied block diagram is shown in Figure 12.

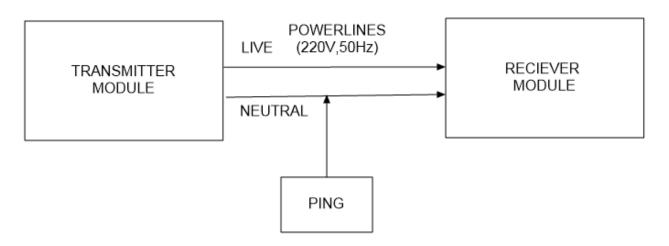


Figure 12: Pinging while connected to LIVE Powerline.

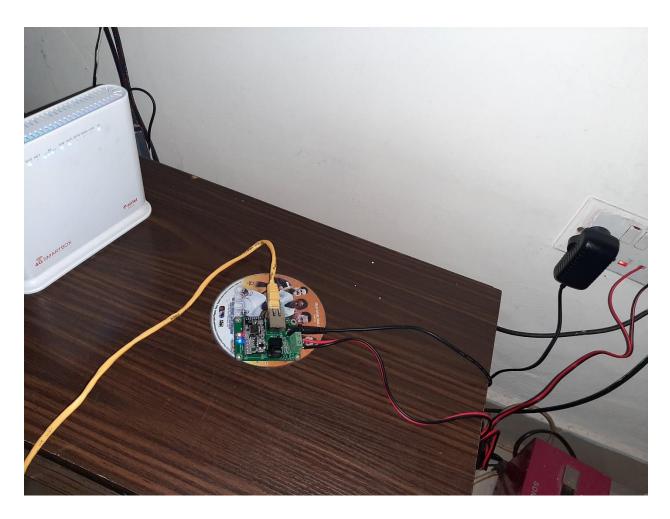


Figure 13: Test scenario 2 Home LAN (TX)

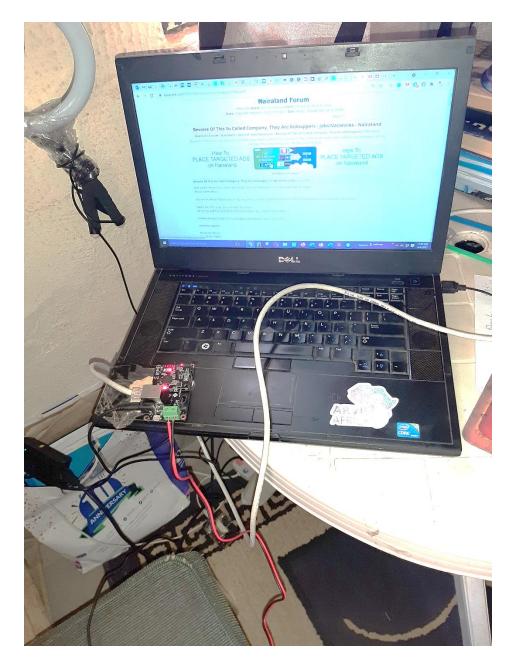


Figure 14: Test scenario 2 Home LAN (RX) with website opening

3.6(3.4) Tools analysis

 Table 6: Iperf3 tools configuration

Tools	Description of function	Commands
Iperf3	The Iperf3 tool is used for	C:\iperf>iperf3 -c
	the measurement of	192.168.10.100 -w -64k -p -i 10 -
	bandwidth,	t999
	jitter and packet loss	
	regarding UDP traffic.	C:\WINDOWS\system32>ping
	UDP traffic does not	192.168.10.100
	employ flow or error	
	control mechanisms and it	C:\iperf>iperf3 -c
	is used for realtime	192.168.10.100 -w -u -64k -p -i
	services such as video	10 -t2000
	streams and VoIP	
		C:\iperf>iperf3 -c
		192.168.10.100 -w -u -64k -p -i
		10 -t2000
	Set bandwidth to	C:\iperf>iperf3 -c
	1Mbits/sec	192.168.10.100 -b 1M -u -w -
		64k -i 10 -t2000
	Set bandwidth to	C:\iperf>iperf3 -c
	5Mbits/sec	192.168.10.100 -b 5М -u -w -
		64k -i 10 -t2000
	Set bandwidth to	C:\iperf>C:\iperf3 -c
	10Mbits/sec	192.168.10.100 -b 10M -u -w -
		64k -i 10 -t2000
		<u> </u>

	Set bandwidth to	C:\iperf>iperf3 -c
	50Mbits/sec	192.168.10.100 -b 50M -u -w -
		64k -i 10 -t2000
IP configuration		192.168.10.100 (Client)
		192.168.10.101 (Server)

3.7(3.5) Testing and measurement of PLC modules

 Table 7:- Measurement of time interval, Transfer and Bandwidth direct connection of module

 (10 seconds duration)

		Bandwidth
Interval (Time)	Transfer (Mbytes)	(Mbits/seconds)
0.00-1.00	9.12	76.4
1.00-2.00	9.5	79.7
2.00-3.00	9.62	80.8
3.00-4.00	9.38	78.6
4.00-5.00	9.25	77.7
5.00-6.00	9.25	77.5
6.00-7.00	9.38	78.7
7.00-8.00	9.25	77.7
8.00-9.00	9.62	80.8
9.00-10.00	9.38	78.6

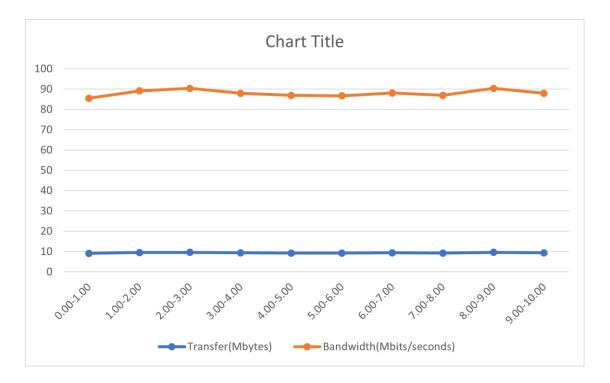


Figure 15: Graph of bandwidth and data transfer

```
C:\Windows\System32\cmd.exe
          t-server-output
                                               get results from serve
                                               use 64-bit counters in UDP test packets
    --udp-counters-64bit
[KMG] indicates options that support a K/M/G suffix for kilo-, mega-, or giga-
iperf3 homepage at: http://software.es.net/iperf/
Report bugs to: https://github.com/esnet/iperf
 :\iperf≻iperf3-c
 'iperf3-c' is not recognized as an internal or external command,
 operable program or batch file.
C:\iperf>iperf3 -c 192.168.10.100 -w -64k -p -i 10 -t999
iperf3: error - unable to connect to server: Cannot assign requested address
C:\iperf>iperf3 -c 192.168.10.100
Connecting to host 192.168.10.100, port 5201
[ 4] local 192.168.10.101 port 54060 connected to 192.168.10.100 port 5201
[ ID] Interval Transfer Bandwidth
                                Transfer Bandwidth
sec 9.12 MBytes 76.4 Mbits/sec
sec 9.62 MBytes 79.7 Mbits/sec
sec 9.62 MBytes 80.8 Mbits/sec
sec 9.25 MBytes 77.7 Mbits/sec
sec 9.25 MBytes 77.5 Mbits/sec
sec 9.25 MBytes 77.7 Mbits/sec
sec 9.25 MBytes 77.7 Mbits/sec
    4]
4]
             0.00-1.00
             1.00-2.00
2.00-3.00
     4
4
             3.00-4.00
             4.00-5.00
             5.00-6.00
6.00-7.00
             7.60-8.60 sec 9.25 MBytes 77.7 Mbits/sec
8.00-9.00 sec 9.62 MBytes 80.8 Mbits/sec
9.00-10.00 sec 9.38 MBytes 78.6 Mbits/sec
     4]
   ID] Interval
                                          Transfer
                                                                Bandwidth
             0.00-10.00 sec 93.8 MBytes 78.6 Mbits/sec
0.00-10.00 sec 93.7 MBytes 78.6 Mbits/sec
                                                                                                                       sender
     41
                                                                                                                       receiver
iperf Done.
 C:\iperf≻
 C:\iperf≻
 C:\iperf>
    \iperf>iperf3
                                192.168.10.100
                                                                -64k
                                                                                  10
```


	Transfer	Bandwidth
Interval (Time)	(Mbytes)	Mbits/sec
0.00-10.00	107	89.5
10.00-20.00	106	89.3
20.00-30.00	98	82.2
30.00-40.00	89.1	74.8
40.00-50.00	107	89.6
50.00-60.00	107	90
60.00-70.00	107	89.9
70.00-80.00	107	89.5
80.00-90.00	94.6	79.4
90.00-100.00	91.1	76.4
100.00-110.00	107	89.9
110.00-120.00	107	89.4
120.00-130.00	107	89.5
130.00-140.00	107	89.5
140.00-150.00	94.6	79.4
150.00-160.00	90.8	76.1
160.00-170.00	107	89.5
170.00-180.00	107	89.8
180.00-190.00	107	89.7
190.00-200.00	107	89.4
200.00-210.01	94.4	79.1
210.01-220.01	89.9	75.4
220.01-230.00	106	89.3
230.00-240.00	107	89.5
240.00-250.00	107	89.7
250.00-260.00	45.6	38.3

 Table 8:- Measurement of time interval, Transfer and Bandwidth direct connection of module

 (620 seconds duration)

	-
49.6	41.6
89.5	75.1
107	90
106	89.2
107	89.5
107	89.8
96.1	80.6
91.8	77
107	89.7
107	89.5
106	88.9
105	88
94.6	79.4
25.4	21.3
11.6	9.75
53.5	44.9
0	0
0	0
66.4	55.7
92.4	77.5
107	89.7
53.5	44.9
0	0
0	0
0	0
60.2	50.6
107	89.7
107	89.5
107	89.4
107	89.6
	89.5 107 106 107 107 96.1 91.8 107 107 91.8 107 106 107 94.6 25.4 11.6 53.5 0 66.4 92.4 107 53.5 0 0 66.4 92.4 107 53.5 0 0 107 107 107 107 107 107 107 107 107 107 107

560.00-570.01	94.2	79
570.01-580.00	89.9	75.4
580.00-590.00	107	90
590.00-600.00	107	89.5
600.00-610.01	107	89.5
610.01-620.00	107	90.1
620.00-630.00	95.6	80.2
630.00-640.00	88.4	74.1

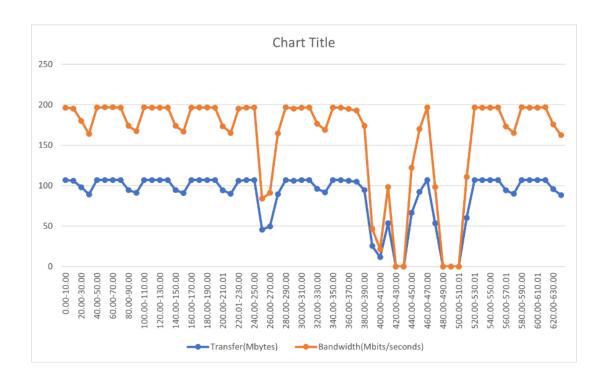


Figure 17: Graph of bandwidth and data transfer

[ID]	Interval	Transfer	Bandwidth
[4]	0.00-10.00 sec	10.4 MBytes	8.70 Mbits/sec
[4]	10.00-20.00 sec	9.75 MBytes	8.18 Mbits/sec
[4]	20.00-30.00 sec	9.75 MBytes	8.18 Mbits/sec
[4]	30.00-40.00 sec	9.62 MBytes	8.08 Mbits/sec
[4]	40.00-50.00 sec	9.38 MBytes	7.86 Mbits/sec
[4]	50.00-60.00 sec	9.50 MBytes	7.97 Mbits/sec
[4]	60.00-70.00 sec	9.25 MBytes	7.76 Mbits/sec
[4]	70.00-80.00 sec	9.38 MBytes	7.87 Mbits/sec
[4]	80.00-90.00 sec	9.38 MBytes	7.86 Mbits/sec
[4]	90.00-100.00 sec	9.25 MBytes	7.76 Mbits/sec
[4]	100.00-110.00 sec	9.25 MBytes	7.76 Mbits/sec
[4]	110.00-120.00 sec	9.25 MBytes	7.76 Mbits/sec
[4]	120.00-130.00 sec	9.25 MBytes	7.76 Mbits/sec
[4]	130.00-140.00 sec	9.25 MBytes	7.76 Mbits/sec
[4]	140.00-150.00 sec	9.25 MBytes	7.76 Mbits/sec
[4]	150.00-160.00 sec	9.25 MBytes	7.76 Mbits/sec
[4]	160.00-170.00 sec	8.62 MBytes	7.24 Mbits/sec
[4]	170.00-180.00 sec	8.62 MBytes	7.23 Mbits/sec
[4]	180.00-190.00 sec	8.50 MBytes	7.13 Mbits/sec
[4]	190.00-200.00 sec	8.38 MBytes	7.03 Mbits/sec
[4]	200.00-210.00 sec	8.12 MBytes	6.82 Mbits/sec
[4]	210.00-220.00 sec	7.62 MBytes	6.40 Mbits/sec
[4]	220.00-230.00 sec	7.50 MBytes	6.29 Mbits/sec
[4]	230.00-240.01 sec	7.50 MBytes	6.29 Mbits/sec
[4]	240.01-250.00 sec	7.50 MBytes	6.30 Mbits/sec
[4]	250.00-260.00 sec	7.50 MBytes	6.29 Mbits/sec
[4]	260.00-270.00 sec	7.75 MBytes	6.50 Mbits/sec

 Table 9: - Measurement Of Time Interval, Transfer And Bandwidth Unspecified Bandwidth On

 Powerline With PHCN (30meters)

[4]	270.00-280.00 sec	7.50 MBytes	6.29 Mbits/sec
[4]	280.00-290.00 sec	7.50 MBytes	6.29 Mbits/sec
[4]	290.00-300.00 sec	7.50 MBytes	6.29 Mbits/sec
[4]	300.00-310.00 sec	7.50 MBytes	6.29 Mbits/sec
[4]	310.00-320.00 sec	7.50 MBytes	6.29 Mbits/sec
[4]	320.00-330.01 sec	8.12 MBytes	6.81 Mbits/sec
[4]	330.01-340.01 sec	8.00 MBytes	6.71 Mbits/sec
[4]	340.01-350.01 sec	7.88 MBytes	6.60 Mbits/sec
[4]	350.01-360.00 sec	7.88 MBytes	6.61 Mbits/sec
[4]	360.00-370.00 sec	7.88 MBytes	6.61 Mbits/sec
[4]	370.00-380.00 sec	7.75 MBytes	6.50 Mbits/sec
[4]	380.00-390.00 sec	7.75 MBytes	6.50 Mbits/sec
[4]	390.00-400.00 sec	7.62 MBytes	6.40 Mbits/sec
[4]	400.00-410.00 sec	7.38 MBytes	6.19 Mbits/sec
[4]	410.00-420.00 sec	7.25 MBytes	6.08 Mbits/sec
[4]	420.00-430.00 sec	7.00 MBytes	5.87 Mbits/sec
[4]	430.00-440.00 sec	7.12 MBytes	5.98 Mbits/sec
[4]	440.00-450.00 sec	7.75 MBytes	6.50 Mbits/sec
[4]	450.00-460.00 sec	7.62 MBytes	6.40 Mbits/sec
[4]	460.00-470.00 sec	7.88 MBytes	6.61 Mbits/sec
[4]	470.00-480.00 sec	8.00 MBytes	6.71 Mbits/sec
[4]	480.00-490.00 sec	8.00 MBytes	6.71 Mbits/sec
[4]	490.00-500.00 sec	7.88 MBytes	6.61 Mbits/sec
[4]	500.00-510.00 sec	8.00 MBytes	6.71 Mbits/sec
[4]	510.00-520.00 sec	8.00 MBytes	6.71 Mbits/sec
[4]	520.00-530.00 sec	8.12 MBytes	6.82 Mbits/sec
[4]	530.00-540.00 sec	8.00 MBytes	6.71 Mbits/sec
[4]	540.00-550.00 sec	8.12 MBytes	6.82 Mbits/sec
[4]	550.00-560.00 sec	8.00 MBytes	6.71 Mbits/sec
[4]	560.00-570.00 sec	8.12 MBytes	6.82 Mbits/sec

[4]	570.00-580.00 sec	7.62 MBytes	6.40 Mbits/sec
[4]	580.00-590.00 sec	7.25 MBytes	6.08 Mbits/sec
[4]	590.00-600.00 sec	7.50 MBytes	6.29 Mbits/sec
[4]	600.00-610.00 sec	7.38 MBytes	6.19 Mbits/sec
[4]	610.00-620.00 sec	7.25 MBytes	6.08 Mbits/sec
[4]	620.00-630.01 sec	7.50 MBytes	6.29 Mbits/sec
[4]	630.01-640.00 sec	7.38 MBytes	6.19 Mbits/sec
[4]	640.00-650.01 sec	7.25 MBytes	6.08 Mbits/sec
[4]	650.01-660.01 sec	7.12 MBytes	5.98 Mbits/sec
[4]	660.01-670.00 sec	7.25 MBytes	6.09 Mbits/sec
[4]	670.00-680.00 sec	7.25 MBytes	6.08 Mbits/sec
[4]	680.00-690.00 sec	7.38 MBytes	6.19 Mbits/sec
[4]	690.00-700.00 sec	7.38 MBytes	6.19 Mbits/sec
[4]	700.00-710.00 sec	7.88 MBytes	6.61 Mbits/sec
[4]	710.00-720.00 sec	7.75 MBytes	6.50 Mbits/sec

 Table 10:- Measurement Of Time Interval, Transfer And Bandwidth at Unspecified Bandwidth

 On Powerline With PHCN (60meters)

[ID]	Interval	Transfer	Bandwidth
[5]	0.00-10.01 sec	4.01 MBytes	3.36 Mbits/sec
[5]	10.01-20.00 sec	3.89 MBytes	3.27 Mbits/sec
[5]	20.00-30.00 sec	4.52 MBytes	3.80 Mbits/sec
[5]	30.00-40.00 sec	4.18 MBytes	3.51 Mbits/sec
[5]	40.00-50.00 sec	4.14 MBytes	3.47 Mbits/sec
[5]	50.00-60.00 sec	4.32 MBytes	3.62 Mbits/sec
[5]	60.00-70.01 sec	3.94 MBytes	3.30 Mbits/sec
[5]	70.01-80.00 sec	3.87 MBytes	3.24 Mbits/sec
[5]	80.00-90.00 sec	3.89 MBytes	3.26 Mbits/sec
[5]	90.00-100.00 sec	3.87 MBytes	3.25 Mbits/sec

[5]	100.00-110.00 sec	3.86 MBytes	3.24 Mbits/sec
[5]	110.00-120.00 sec	3.81 MBytes	3.20 Mbits/sec
[5]	120.00-130.00 sec	3.66 MBytes	3.07 Mbits/sec
[5]	130.00-140.00 sec	3.67 MBytes	3.08 Mbits/sec
[5]	140.00-150.00 sec	3.70 MBytes	3.10 Mbits/sec
[5]	150.00-160.01 sec	3.68 MBytes	3.08 Mbits/sec
[5]	160.01-170.01 sec	3.65 MBytes	3.06 Mbits/sec
[5]	170.01-180.00 sec	3.26 MBytes	2.74 Mbits/sec
[5]	180.00-190.00 sec	3.17 MBytes	2.66 Mbits/sec
[5]	190.00-200.00 sec	4.37 MBytes	3.67 Mbits/sec
[5]	200.00-210.00 sec	4.82 MBytes	4.04 Mbits/sec
[5]	210.00-220.00 sec	4.55 MBytes	3.82 Mbits/sec
[5]	220.00-230.00 sec	4.53 MBytes	3.80 Mbits/sec
[5]	230.00-240.00 sec	4.41 MBytes	3.70 Mbits/sec
[5]	240.00-250.00 sec	4.19 MBytes	3.52 Mbits/sec
[5]	250.00-260.00 sec	3.77 MBytes	3.16 Mbits/sec
[5]	260.00-270.00 sec	3.46 MBytes	2.90 Mbits/sec
[5]	270.00-280.00 sec	3.66 MBytes	3.07 Mbits/sec
[5]	280.00-290.00 sec	3.53 MBytes	2.96 Mbits/sec
[5]	290.00-300.00 sec	3.78 MBytes	3.17 Mbits/sec
[5]	300.00-310.00 sec	3.47 MBytes	2.91 Mbits/sec
[5]	310.00-320.00 sec	2.67 MBytes	2.24 Mbits/sec
[5]	320.00-330.00 sec	4.03 MBytes	3.38 Mbits/sec
[5]	330.00-340.00 sec	3.39 MBytes	2.84 Mbits/sec
L	1		1

 Table 11:- Measurement Of Time Interval, Total Datagrams On 5Mbps Bandwidth On Powerline

 With Generator (Server/Transmitting Module)

[ID]	Interval	Transfer	Bandwidth	Total Datagrams
[4]	0.00-10.00 sec	5.95 MBytes	4.99 Mbits/sec	762

[4]	10.00-20.01 sec	5.93 MBytes	4.97 Mbits/sec	759
[4]	20.01-30.01 sec	5.95 MBytes	5.00 Mbits/sec	762
[4]	30.01-40.00 sec	5.96 MBytes	5.00 Mbits/sec	763
[4]	40.00-50.00 sec	5.98 MBytes	5.02 Mbits/sec	765
[4]	50.00-60.00 sec	5.95 MBytes	4.99 Mbits/sec	761
[4]	60.00-70.00 sec	5.96 MBytes	5.00 Mbits/sec	763
[4]	70.00-80.01 sec	5.96 MBytes	5.00 Mbits/sec	763
[4]	80.01-90.00 sec	5.95 MBytes	5.00 Mbits/sec	762
[4]	90.00-100.00 sec	6.00 MBytes	5.03 Mbits/sec	768
[4]	100.00-110.00 sec	5.95 MBytes	4.99 Mbits/sec	762
[4]	110.00-120.00 sec	5.96 MBytes	5.00 Mbits/sec	763
[4]	120.00-130.01 sec	5.94 MBytes	4.98 Mbits/sec	760
[4]	130.01-140.00 sec	5.95 MBytes	5.00 Mbits/sec	762
[4]	140.00-150.01 sec	5.96 MBytes	5.00 Mbits/sec	763
[4]	150.01-160.01 sec	5.96 MBytes	5.00 Mbits/sec	763
[4]	160.01-170.00 sec	5.97 MBytes	5.01 Mbits/sec	764
[4]	170.00-224.45 sec	8.00 KBytes	1.20 Kbits/sec	1
[4]	224.45-224.45 sec	0.00 Bytes	0.00 bits/sec	0
[4]	224.45-224.45 sec	0.00 Bytes	0.00 bits/sec	0
[4]	224.45-224.45 sec	0.00 Bytes	0.00 bits/sec	0
[4]	224.45-224.46 sec	0.00 Bytes	0.00 bits/sec	0
	•			

[5]	Interval	Transfer	Bandwidth	Jitter	Lost/Total	Datagrams
		1.40	1.17	35.511		
[5]	0.00-10.00 sec	MBytes	Mbits/sec	ms	477/656	-73%
			537	49.857		
[5]	10.00-20.00 sec	656 KBytes	Kbits/sec	ms	543/625	-87%
		1.06	891	50.040		
[5]	20.00-30.01 sec	MBytes	Kbits/sec	ms	660/796	-83%
		3.35	2.81	20.384		
[5]	30.01-40.00 sec	MBytes	Mbits/sec	ms	534/963	-55%
		5.97	5.01	19.988		
[5]	40.00-50.01 sec	MBytes	Mbits/sec	ms	0/764	0%
		5.95	4.99	23.832		
[5]	50.01-60.01 sec	MBytes	Mbits/sec	ms	0/761	0%
		5.38	4.52	22.241		
[5]	60.01-70.00 sec	MBytes	Mbits/sec	ms	61/750	-8.10%
		2.95	2.47	32.815		
[5]	70.00-80.01 sec	MBytes	Mbits/sec	ms	379/757	-50%
		2.54	2.13	34.289		
[5]	80.01-90.00 sec	MBytes	Mbits/sec	ms	441/766	-58%
		4.27	3.58	22.652		
[5]	90.00-100.00 sec	MBytes	Mbits/sec	ms	225/772	-29%
		5.18	4.35	22.830		
[5]	100.00-110.00 sec	MBytes	Mbits/sec	ms	94/757	-12%
		4.55	3.81	23.301		
[5]	110.00-120.00 sec	MBytes	Mbits/sec	ms	181/763	-24%
		3.91	3.28	25.735		
[5]	120.00-130.01 sec	MBytes	Mbits/sec	ms	262/762	-34%
[5]	130.01-140.00 sec	4.66	3.91	22.691	182/779	-23%

 Table 12:- Measurement Of Time Interval, Jitter, Lost/Total Datagrams On 5Mbps Bandwidth

 On Powerline With Generator (Client/Receiving Module)

		MBytes	Mbits/sec	ms		
		4.28	3.59	34.675		
[5]	140.00-150.01 sec	MBytes	Mbits/sec	ms	123/671	-18%
			308	80.979		
[5]	150.01-160.01 sec	376 KBytes	Kbits/sec	ms	671/718	-93%
			498	41.797		
[5]	160.01-170.01 sec	608 KBytes	Kbits/sec	ms	560/636	-88%
			472	34.359		
[5]	170.01-180.00 sec	576 KBytes	Kbits/sec	ms	184/256	-72%
				34.359		
[5]	180.00-190.01 sec	0.00 Bytes	0.00 bits/sec	ms	0/0	0%
				34.359		
[5]	190.01-200.01 sec	0.00 Bytes	0.00 bits/sec	ms	0/0	0%
				34.359		
[5]	200.01-210.01 sec	0.00 Bytes	0.00 bits/sec	ms	0/0	0%
				34.359		
[5]	210.01-220.01 sec	0.00 Bytes	0.00 bits/sec	ms	0/0	0%
		1008	827	85.751		
[5]	220.01-230.00 sec	KBytes	Kbits/sec	ms	297/423	-70%

C:\Windows\System32\cmd.exe - iperf3 - c 192.168.10.100 -b 10M -u -w -64k -i 10 -t2000 —
PoweMicrosoft Windows [Version 10.0.10240] File Edn(C) 2015 Microsoft Corporation. All rights reserved.
C:\Users\wikiman\Desktop>cd
C:\Users\wikiman≻cd
C:\>cdC:\Users>cd
C:\ipe C:\>cd iperf
<pre>Connect C:\iperf>C:\iperf>iperf3 -c 192.168.10.100 -b 10M -u -w -64k -i 10 -t2000 [4] 'C:\iperf' is not recognized as an internal or external command, [ID] operable program or batch file. [4] [4] [4] [4] C:\iperf>iperf3 -c 192.168.10.100 -b 10M -u -w -64k -i 10 -t2000 [4] Connecting to host 192.168.10.100, port 5201 [4] [4] local 192.168.10.101 port 59724 connected to 192.168.10.100 port 5201 [4] [4] local 192.168.10.101 port 59724 connected to 192.168.10.100 port 5201 [4] [4] local 192.168.10.101 port 59724 connected to 192.168.10.100 port 5201 [4] [4] local 192.168.10.101 port 59724 connected to 192.168.10.100 port 5201 [4] [4] local 192.168.10.101 port 59724 connected to 192.168.10.100 port 5201 [4] [4] 0.00-10.00 sec 11.9 MBytes 9.94 Mbits/sec 1517 [4] [4] 10.00-20.00 sec 11.9 MBytes 9.99 Mbits/sec 1524 [4] [4] 10.00-20.00 sec 11.9 MBytes 10.0 Mbits/sec 1527 [4] [4] 20.00-30.00 sec 11.9 MBytes 10.0 Mbits/sec 1532 [4] [4] 30.00-40.00 sec 12.0 MBytes 10.0 Mbits/sec 1532 [4] [4] 30.00-40.00 sec 12.0 MBytes 10.0 Mbits/sec 1532 [4] [4] 30.00-40.00 sec 12.0 MBytes 10.0 Mbits/sec 1532 [4] [4] [4] 30.00-40.00 sec 12.0 MBytes 10.0 Mbits/sec 1532 [4] [4] [4] 30.00-40.00 sec 12.0 MBytes 10.0 Mbits/sec 1532 [4] [4] [4] 30.00-40.00 sec 12.0 MBytes 10.0 Mbits/sec 1532 [4] [4] [4] 30.00-40.00 sec 12.0 MBytes 10.0 Mbits/sec 1532 [4] [4] [4] [4] [4] [4] [4] [4]</pre>
[4] : [4] 140.00-150.01 sec 5.96 MBytes 5.00 Mbits/sec /63
[4] 150.01-160.01 sec 5.96 MBytes 5.00 Mbits/sec 763
<pre>[4] 160.01-170.00 sec 5.97 MBytes 5.01 Mbits/sec 764 [4] 170.00-224.45 sec 8.00 KBytes 1.20 Kbits/sec 1</pre>
[4] 224.45-224.45 sec 0.00 Bytes 0.00 bits/sec 0
[4] 224.45-224.45 sec 0.00 Bytes 0.00 bits/sec 0
[4] 224.45-224.45 sec 0.00 Bytes 0.00 bits/sec 0

Figure 18: CMD line for 10Mbps bandwidth

				Total
[ID]	Interval	Transfer	Bandwidth	Datagrams
[4]	0.00-10.00 sec	11.9 MBytes	9.94 Mbits/sec	1517
[4]	10.00-20.00 sec	11.9 MBytes	9.99 Mbits/sec	1524
[4]	20.00-30.00 sec	11.9 MBytes	10.0 Mbits/sec	1527
[4]	30.00-40.00 sec	12.0 MBytes	10.0 Mbits/sec	1532
[4]	40.00-50.00 sec	11.9 MBytes	9.95 Mbits/sec	1519
[4]	50.00-60.00 sec	11.9 MBytes	9.98 Mbits/sec	1523
[4]	60.00-70.00 sec	12.0 MBytes	10.0 Mbits/sec	1530
[4]	70.00-80.00 sec	11.9 MBytes	10.0 Mbits/sec	1528
[4]	80.00-90.01 sec	12.0 MBytes	10.0 Mbits/sec	1534
[4]	90.01-100.00 sec	11.8 MBytes	9.93 Mbits/sec	1514
[4]	100.00-110.00 sec	11.9 MBytes	9.98 Mbits/sec	1524
[4]	110.00-120.00 sec	11.9 MBytes	10.0 Mbits/sec	1528
[4]	120.00-130.01 sec	11.9 MBytes	9.98 Mbits/sec	1524
[4]	130.01-140.00 sec	12.0 MBytes	10.1 Mbits/sec	1534
[4]	140.00-150.00 sec	11.9 MBytes	9.97 Mbits/sec	1521
[4]	150.00-160.00 sec	11.9 MBytes	10.0 Mbits/sec	1527
[4]	160.00-170.00 sec	12.0 MBytes	10.0 Mbits/sec	1531
[4]	170.00-180.00 sec	11.9 MBytes	9.95 Mbits/sec	1518
[4]	180.00-190.00 sec	11.9 MBytes	10.0 Mbits/sec	1526
[4]	190.00-200.00 sec	11.9 MBytes	10.0 Mbits/sec	1526
[4]	200.00-210.00 sec	11.9 MBytes	10.0 Mbits/sec	1527
[4]	210.00-220.00 sec	11.9 MBytes	10.0 Mbits/sec	1526

Table 13:- Measurement Of Time Interval, Total Datagrams On 10Mbps Bandwidth OnPowerline With Generator (Server/Transmitting Module)

[ID]	Interval	Transfer	Bandwidth	Jitter	Lost/Total	Datagrams
			3.18	21.499		
[5]	0.00-10.01 sec	3.79 MBytes	Mbits/sec	ms	482/967	-50%
	10.01-20.00		1.90	30.334		
[5]	sec	2.27 MBytes	Mbits/sec	ms	1593/1883	-85%
	20.00-30.00		1.51	33.761		
[5]	sec	1.80 MBytes	Mbits/sec	ms	556/786	-71%
	30.00-40.00			33.110		
[5]	sec	904 KBytes	741 Kbits/sec	ms	981/1094	-90%
	40.00-50.00		1.97	18.404		
[5]	sec	2.34 MBytes	Mbits/sec	ms	2315/2615	-89%
	50.00-60.00		1.39	27.077		
[5]	sec	1.66 MBytes	Mbits/sec	ms	1385/1597	-87%
	60.00-70.01		1.82	54.089		
[5]	sec	2.17 MBytes	Mbits/sec	ms	517/795	-65%
	70.01-80.01		1.23	23.485		
[5]	sec	1.47 MBytes	Mbits/sec	ms	608/796	-76%
	80.01-90.01		1.64	53.961		
[5]	sec	1.95 MBytes	Mbits/sec	ms	566/816	-69%
	90.01-100.01			45.402		
[5]	sec	960 KBytes	786 Kbits/sec	ms	524/644	-81%
	100.01-110.00	1000		59.309		
[5]	sec	KBytes	820 Kbits/sec	ms	526/651	-81%
	110.00-120.00			64.886		
[5]	sec	1.16 MBytes	970 Kbits/sec	ms	517/665	-78%

Table 14:- Measurement Of Time Interval, Jitter, Lost/Total Datagrams On 10Mbps Bandwidth On Powerline With Generator (Client/Receiving Module)

	120.00-130.01		1.17	52.047		
[5]	sec	1.40 MBytes	Mbits/sec	ms	496/675	-73%
	130.01-140.00			41.729		
[5]	sec	1.17 MBytes	983 Kbits/sec	ms	592/742	-80%
	140.00-150.01			178.736		
[5]	sec	752 KBytes	616 Kbits/sec	ms	820/914	-90%
	150.01-160.01		1.25	90.323		
[5]	sec	1.48 MBytes	Mbits/sec	ms	478/668	-72%
	160.01-170.01		2.06	35.497		
[5]	sec	2.45 MBytes	Mbits/sec	ms	1244/1558	-80%
	170.01-180.01		1.02	57.105		
[5]	sec	1.22 MBytes	Mbits/sec	ms	981/1137	-86%
	180.01-190.00			67.494		
[5]	sec	816 KBytes	669 Kbits/sec	ms	511/613	-83%
	190.00-200.00		1.07	87.733		
[5]	sec	1.27 MBytes	Mbits/sec	ms	1155/1318	-88%
	200.00-210.01			48.406		
[5]	sec	712 KBytes	583 Kbits/sec	ms	532/621	-86%
	210.01-220.01		1.59	33.971		
[5]	sec	1.89 MBytes	Mbits/sec	ms	530/772	-69%
	220.01-230.01		2.43	48.991		
[5]	sec	2.90 MBytes	Mbits/sec	ms	482/853	-57%

🔳 🗹 📙 🖛 Desktop	
File Home Share View	
🚽 📄 👗 Cut 📃 📋 🗙 🛋 📜 🕼 New item - 🕞 🖉 Open - 🗄 Select all	
PowerLineReading-1 - Notepad	
File Edit Forma C:\Windows\System32\cmd.exe - iperf3 -c 192.168.10.100 -b 50M -u -w -64k -i 10 -t2000	- 🗆 X
C:\iperf> <mark>iper</mark> C:\Users\wikiman>cd	i and i a
Connecting to	
<pre>[4] local 1C:\Users>cd [ID] Interva</pre>	
[4] 0.00 ² (\>cd iperf	
[4] 20.00-C:\iperf>iperf3 -c 192.168.10.100 -b 50M -u -w -64k -i 10 -t2000 [4] 20.00-iperf3: error - unable to connect to server: Connection timed out	
4 30.00-	
[4] 40.00-C:\iperf>	
<pre>[4] 50.00-C:\iperf> [4] 60.00-C:\iperf></pre>	
[4] 0.00-C (Jpert)	
[4] 80.00_C:\iperf>iperf3 -c 192.168.10.100 -b 50M -u -w -64k -i 10 -t2000	
[4] 90.01 Connecting to host 192.168.10.100, port 5201	
[4] 100.00-[4] local 192.168.10.101 port 60059 connected to 192.168.10.100 port 5201 [4] 100.00-[ID] Interval Transfer Bandwidth Total Datagrams	
4 110.00- [4] 0.00-10.00 sec 59.5 MBytes 49.9 Mbits/sec 7618	
<pre>[4] 120.00-[4] 10.00-20.01 sec 59.2 MBytes 49.6 Mbits/sec 7577 [4] 130.01-[4] 20.01-30.00 sec 59.6 MBytes 50.0 Mbits/sec 7530</pre>	
[4] 130.01-[4] 20.01-30.00 sec 59.6 MBytes 50.0 Mbits/sec 7630 [4] 140.00-[4] 30.00-40.00 sec 59.7 MBytes 50.0 Mbits/sec 7636	
[4] 150.00 [4] 30.00-50.00 sec 59.5 MBytes 30.9 Mbits/sec 7521	
[4] 160.00-[4] 50.00-60.00 sec 59.9 MBytes 50.2 Mbits/sec 7665	
[4] 170.00-[4] 60.00-70.00 sec 59.3 MBytes 49.8 Mbits/sec 7595	
4] 180.00- [4] 80.00 00 00 cos E0.6 MPytos E0.0 Mbits/cos 7600	
4 190.00-1 41 90.00-100.00 sec 59.6 MBytes 50.0 Mbits/sec 7634	
[4] 200.00-[4] 100.00-110.00 sec 59.6 MBytes 50.0 Mbits/sec 7623 [4] 210.00-[4] 110.00-120.00 sec 59.6 MBytes 50.0 Mbits/sec 7630	
<pre>[4] 210.00-[4] 110.00-120.00 sec 59.6 MBytes 50.0 Mbits/sec 7630 [4] 120.00-130.00 sec 59.6 MBytes 50.0 Mbits/sec 7623</pre>	
[4] 130.00-140.00 sec 59.7 MBytes 50.0 Mbits/sec 7025	
[4] 140.00-150.00 sec 59.7 MBytes 50.1 Mbits/sec 7637	A
	3

Figure 19: CMD Line for 50MBps bandwidth

				Total
[ID]	Interval	Transfer	Bandwidth	Datagrams
[4]	0.00-10.00 sec	59.5 MBytes	49.9 Mbits/sec	7618
[4]	10.00-20.01 sec	59.2 MBytes	49.6 Mbits/sec	7577
[4]	20.01-30.00 sec	59.6 MBytes	50.0 Mbits/sec	7630
[4]	30.00-40.00 sec	59.7 MBytes	50.0 Mbits/sec	7636
[4]	40.00-50.00 sec	59.5 MBytes	49.9 Mbits/sec	7621
[4]	50.00-60.00 sec	59.9 MBytes	50.2 Mbits/sec	7665
[4]	60.00-70.00 sec	59.3 MBytes	49.8 Mbits/sec	7595
[4]	70.00-80.00 sec	59.6 MBytes	50.0 Mbits/sec	7630
[4]	80.00-90.00 sec	59.6 MBytes	50.0 Mbits/sec	7629
[4]	90.00-100.00 sec	59.6 MBytes	50.0 Mbits/sec	7634
[4]	100.00-110.00 sec	59.6 MBytes	50.0 Mbits/sec	7623
[4]	110.00-120.00 sec	59.6 MBytes	50.0 Mbits/sec	7630
[4]	120.00-130.00 sec	59.6 MBytes	50.0 Mbits/sec	7623
[4]	130.00-140.00 sec	59.7 MBytes	50.0 Mbits/sec	7636
[4]	140.00-150.00 sec	59.7 MBytes	50.1 Mbits/sec	7637
[4]	150.00-160.00 sec	59.5 MBytes	49.9 Mbits/sec	7621

Table 15:- Measurement Of Time Interval, Total Datagrams On 50Mbps Bandwidth On Powerline With PHCN (Server/Transmitting Module)

						Determine
		The second	D 1 11	T		Datagram
[ID]	Interval	Transfer	Bandwidth	Jitter	Lost/Total	S
[5]	0.00-10.00 sec	4.34 MBytes	3.64 Mbits/sec	57.246 ms	419/974	-43%
				181.336		
[5]	10.00-20.00 sec	896 KBytes	734 Kbits/sec	ms	499/611	-82%
[5]	20.00-30.00 sec	1.66 MBytes	1.40 Mbits/sec	18.238 ms	511/724	-71%
[5]	30.00-40.01 sec	3.20 MBytes	2.69 Mbits/sec	18.696 ms	554/964	-57%
[5]	40.01-50.01 sec	1.36 MBytes	1.14 Mbits/sec	75.181 ms	573/747	-77%
				104.637		
[5]	50.01-60.01 sec	1.02 MBytes	858 Kbits/sec	ms	510/641	-80%
[5]	60.01-70.01 sec	1.90 MBytes	1.59 Mbits/sec	59.946 ms	522/765	-68%
[5]	70.01-80.00 sec	2.88 MBytes	2.42 Mbits/sec	36.624 ms	540/909	-59%
[5]	80.00-90.02 sec	2.85 MBytes	2.39 Mbits/sec	36.457 ms	596/961	-62%
[5]	90.02-100.00 sec	2.83 MBytes	2.38 Mbits/sec	45.422 ms	552/914	-60%
	100.00-110.01					
[5]	sec	1.27 MBytes	1.07 Mbits/sec	60.835 ms	611/774	-79%
	110.01-120.00					
[5]	sec	2.37 MBytes	1.99 Mbits/sec	20.356 ms	560/863	-65%
	120.00-130.01					
[5]	sec	3.13 MBytes	2.63 Mbits/sec	13.927 ms	582/983	-59%
	130.01-140.01					
[5]	sec	4.23 MBytes	3.55 Mbits/sec	24.342 ms	948/1490	-64%
	140.01-150.01			107.571		
[5]	sec	984 KBytes	806 Kbits/sec	ms	579/702	-82%
	150.01-160.00					
[5]	sec	920 KBytes	755 Kbits/sec	52.544 ms	604/719	-84%
	160.00-170.00					
[5]	sec	1.07 MBytes	898 Kbits/sec	74.601 ms	559/696	-80%

Table 16:- Measurement Of Time Interval, Jitter, Lost/Total Datagrams On 50Mbps BandwidthOn Powerline With PHCN (Client/Receiving Module)

[ID]	Interval	Transfer	Bandwidth	Total Datagrams
[4]	0.00-10.00 sec	1.52 MBytes	1.27 Mbits/sec	194
[4]	10.00-20.00 sec	1.50 MBytes	1.26 Mbits/sec	192
[4]	20.00-30.00 sec	1.49 MBytes	1.25 Mbits/sec	191
[4]	30.00-40.00 sec	1.48 MBytes	1.25 Mbits/sec	190
[4]	40.00-50.00 sec	1.49 MBytes	1.25 Mbits/sec	191
[4]	50.00-60.00 sec	1.48 MBytes	1.25 Mbits/sec	190
[4]	60.00-70.00 sec	1.51 MBytes	1.26 Mbits/sec	193
[4]	70.00-80.00 sec	1.49 MBytes	1.25 Mbits/sec	191
[4]	80.00-90.00 sec	1.29 MBytes	1.08 Mbits/sec	165
[4]	90.00-100.00 sec	1.51 MBytes	1.26 Mbits/sec	193
[4]	100.00-110.01 sec	968 KBytes	793 Kbits/sec	121
[4]	110.01-120.01 sec	840 KBytes	688 Kbits/sec	105
[4]	120.01-130.01 sec	912 KBytes	747 Kbits/sec	114
[4]	130.01-140.00 sec	856 KBytes	701 Kbits/sec	107
[4]	140.00-150.00 sec	816 KBytes	669 Kbits/sec	102
[4]	150.00-160.00 sec	1.51 MBytes	1.26 Mbits/sec	193
[4]	160.00-170.00 sec	1.05 MBytes	885 Kbits/sec	135

Table 17:- Measurement Of Time Interval, Total Datagrams On 1Mbps Bandwidth On Powerline With PHCN (Server/Transmitting Module)

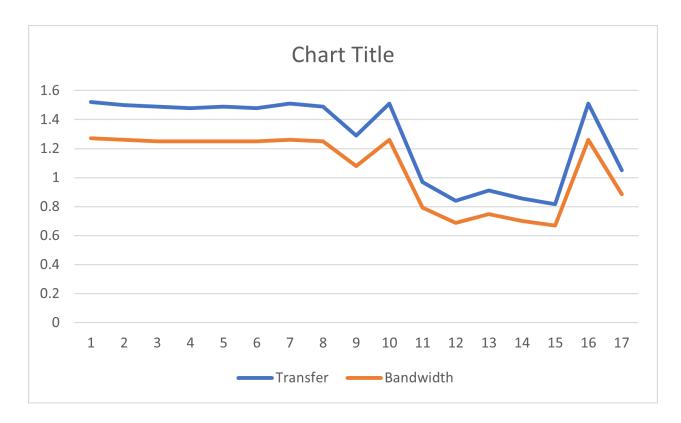


 Table 18:- Measurement Of Time Interval, Jitter, Lost/Total Datagrams On 1Mbps Bandwidth

 On Powerline With PHCN (Client/Receiving Module)

					Lost/Total
[ID]	Interval	Transfer	Bandwidth	Jitter	Datagrams
[10]	0.00-10.00 sec	1.49 MBytes	1.25 Mbits/sec	14.662 ms	0/191 (0%)
[10]	10.00-20.01 sec	1.52 MBytes	1.27 Mbits/sec	15.507 ms	0/194 (0%)
[10]	20.01-30.01 sec	1.48 MBytes	1.25 Mbits/sec	11.366 ms	0/190 (0%)
[10]	30.01-40.01 sec	1.49 MBytes	1.25 Mbits/sec	13.730 ms	0/191 (0%)
[10]	40.01-50.01 sec	1.49 MBytes	1.25 Mbits/sec	12.257 ms	0/191 (0%)
[10]	50.01-60.00 sec	1.48 MBytes	1.25 Mbits/sec	13.993 ms	0/190 (0%)
[10]	60.00-70.00 sec	1.50 MBytes	1.26 Mbits/sec	9.651 ms	0/192 (0%)
[10]	70.00-80.01 sec	1.49 MBytes	1.25 Mbits/sec	11.541 ms	0/191 (0%)
[10]	80.01-90.01 sec	1.29 MBytes	1.08 Mbits/sec	3.857 ms	0/165 (0%)
[10]	90.01-100.01 sec	1.51 MBytes	1.26 Mbits/sec	11.602 ms	0/193 (0%)

[10]	100.01-110.01 sec	976 KBytes	799 Kbits/sec	2.212 ms	0/122 (0%)
[10]	110.01-120.01 sec	840 KBytes	688 Kbits/sec	2.500 ms	0/105 (0%)
[10]	120.01-130.00 sec	912 KBytes	748 Kbits/sec	2.272 ms	0/114 (0%)
[10]	130.00-140.00 sec	856 KBytes	701 Kbits/sec	2.224 ms	0/107 (0%)
[10]	140.00-150.01 sec	808 KBytes	662 Kbits/sec	2.848 ms	0/101 (0%)
[10]	150.01-160.01 sec	1.51 MBytes	1.26 Mbits/sec	12.454 ms	0/193 (0%)
[10]	160.01-170.01 sec	1.06 MBytes	891 Kbits/sec	2.581 ms	0/136 (0%)

Another test was taken this time in a 4 storey plaza with about 80 offices and over a distance of 300m. Table 19 shows the bandwidth and transfer rate. As can be seen the bandwidth drastically reduced based on the distance and size of the building. The routes data travels is almost infinite.

[ID]	Interval	Transfer	Bandwidth
[4]	0.00-10.00 sec	512 KBytes	419 Kbits/sec
[4]	10.00-20.01 sec	256 KBytes	210 Kbits/sec
[4]	20.01-30.01 sec	256 KBytes	210 Kbits/sec
[4]	30.01-40.01 sec	384 KBytes	315 Kbits/sec
[4]	40.01-50.00 sec	384 KBytes	315 Kbits/sec
[4]	50.00-60.00 sec	384 KBytes	315 Kbits/sec
[4]	60.00-70.00 sec	512 KBytes	419 Kbits/sec
[4]	70.00-80.00 sec	384 KBytes	315 Kbits/sec
[4]	80.00-90.00 sec	384 KBytes	315 Kbits/sec
[4]	90.00-100.00 sec	384 KBytes	315 Kbits/sec
[4]	100.00-110.00 sec	384 KBytes	315 Kbits/sec
[4]	110.00-120.00 sec	256 KBytes	210 Kbits/sec
[4]	120.00-130.00 sec	384 KBytes	315 Kbits/sec
[4]	130.00-140.00 sec	512 KBytes	419 Kbits/sec
[4]	140.00-150.00 sec	256 KBytes	210 Kbits/sec
[4]	150.00-160.00 sec	384 KBytes	315 Kbits/sec
[4]	160.00-170.00 sec	256 KBytes	210 Kbits/sec
[4]	170.00-180.00 sec	384 KBytes	315 Kbits/sec
[4]	180.00-190.00 sec	384 KBytes	315 Kbits/sec
[4]	190.00-200.00 sec	512 KBytes	419 Kbits/sec
[4]	200.00-210.00 sec	384 KBytes	315 Kbits/sec
[4]	210.00-220.00 sec	512 KBytes	419 Kbits/sec
[4]	220.00-230.00 sec	640 KBytes	524 Kbits/sec
[4]	230.00-240.00 sec	512 KBytes	419 Kbits/sec
[4]	240.00-250.00 sec	512 KBytes	419 Kbits/sec
	•	•	

Table 19:- Measurement Of Time Interval, Jitter, Lost/Total Datagrams On 1Mbps BandwidthOn Powerline With PHCN (Client/Receiving Module)

[4]	250.00-260.00 sec	640 KBytes	524 Kbits/sec
[4]	260.00-270.00 sec	640 KBytes	524 Kbits/sec
[4]	270.00-280.00 sec	512 KBytes	419 Kbits/sec
[4]	280.00-290.00 sec	512 KBytes	419 Kbits/sec
[4]	290.00-300.01 sec	384 KBytes	314 Kbits/sec
[4]	300.01-310.00 sec	384 KBytes	315 Kbits/sec
[4]	310.00-320.01 sec	512 KBytes	419 Kbits/sec
[4]	320.01-330.00 sec	512 KBytes	420 Kbits/sec

From Table 7 - 19 we can see that as bandwidth increases, the data packets received also increased but as there are packet loss too confirming Shannon Hartley theory for data transmisison. At 1MBPS bandwidth the packet loss was totally lost but at 5MBps to 50MBPS there was considerable improvement.

In PLC there are three main factor responsible for packet losses

- 1. Noise
- 2. Multi routes packet travel
- 3. Distance

Electric appliances and loads that are arbitrarily linked to and detached from the powerline grid, affecting the network topology, also cause interference and noise to in-home PLC. Multipath exists in the powerline channel, and the channel response changes with time and frequency.

However, the advantage is that the packets lost can be recovered and used for other points in case the server modem is sending to multiple client modem. And this is the basics of Internet of things. Also note the datagram received are payloads from the iper3 tool. In real use like multimedia or internet streaming more data will be sent through the bandwidth than those reported in Table 5.

The usage of powerline communication for domestic LAN is for data transmission and internet sharing in an aggressive channel is made possible by OFDM. When connected to the internet the

modules were able to provide internet usability between speeds of 88Mbps to 1.3Mbps. The speed will greatly be affected by the internet service providers and the factors above.

Figure 22-25 shows the spectrum diagrams displaying the center frequencies, harmonics and waveform as recorded by the analyzer. The center frequency is gotten from the formular.

$$f_c = \frac{f_{osc}}{64}$$

Where:

 f_c is carrier frequency.

 f_{osc} is total oscillation frequencies.

64 is OFDM carriers.

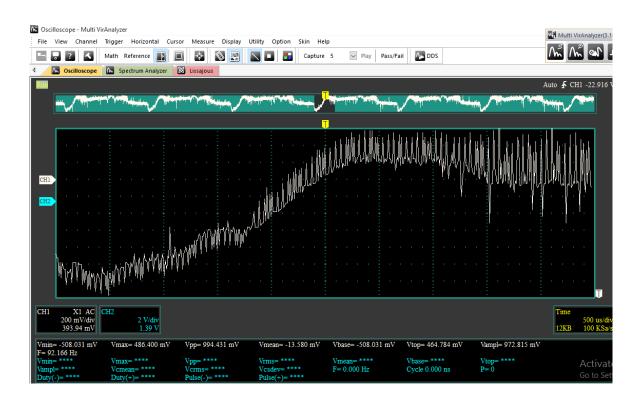


Figure 22: Carrier waveform

e	View	Ch	nanr	el	Ho	rizo	nta		Cu	rso	r	м	-	_		Dis	olay			S	kin	ŀ	lelp														_				_										_	_					3.10.0				Λ.					
		?	4			th	Re	ere	nc	e			L			*	:	¢				E		5]	Ca	ptu	re	5		~	P	Play	F	Pass,	/Fai	1	1	<u>}</u>	DDS	;										Γ	ĥ	<u>I</u> V	'n	2	N.	20	۳	•/•	10	m	Ľ	<u> </u>			
1	0	scillo	sco	oe/	^	s	pec	tru	n A	۱na	lyz	er	1	8	Lis	saj	bus			 																																						_		_	_	_	_	_	_	_
	<i>۲</i>																										***	~~~	~~	~~	~~																												FFT1	FFT1	_	_	tyle engti	_	mpli .024	
	_											-						_					-					_																												•			Windo	w		han	mmin	g		
																																																											Windo	w Pa	ara					
																																																											Refere	ent V	alue	÷		.)	<u>, i</u>	
1																																																											dBmV	V	`	~		÷.		Ĩ
-																																																											10 dB	/ww/	/Gr 🕚	~		2		
																																																								Γ.			Display	y	Mag	gnitu	de	~	F	Re
																																																											FFT2	FFT2	2	Sty	vle	A	mpli	tu
																																																											Source							
	Α	Λ	, ita				ı	<i>a 1</i>	Νı																																																		Windo	w		han	mmin	g		
	Ŵ	1	M	L,	đ.	, N	ή	ľ	'	W	Y	Ņ	ĺ																																														Windo	w Pa	ara					
	Ľ		1	Į.	W	Ŋ.	Į	·١			Į.	:	l.																																														Refere	ant V	alue	2			、 ,	. ,
						I.	ì																																																				Vrms		`	~		÷		
																																																											100 m	nV/Gr	rid	~		2		
																																																											Display			gnitu		~	F	Re
												1																																															0	X-Ax		.og Ci 16			0	A
1		dBn 5.92																																											С	ent (er I 54.(Free 047	9 '619	KH	Iz	San	nple	•	10	00 K	Hz				8 4- 2-		' '	-12	56	
	***	***			000														mW nW					R	0.	000) dI	3m					000			0.0	00	dB	mW		ih * NR		** 00 c	1B	0.	000) dI	3m	W										Center	r Fre			064			

Figure 23: Center Carrier frequency of upper range 64KHz (On LV Line)

Oscillo File Vi		- Mu Chan					loriz	ont	al	Cu	rso	r	Mei	asui	re	Di	spla	у	Util	lity	C	Opti	on	Sk	cin	He	elp																					мў.	M	ulti \	VirAr	nalyz	er(
	?	K		Ma	th	Refe	eren	ce	Ē				→ [↓]	4	1	2									Сар	oture	2 5	5	ŀ	~	Play	F	ass	/Fail		٩.	DD	s										Λ	h	Λ	ĥ	Q	r
A	Oscil	losco	ре	h	Sp	ecti	rum	Ana	lyze	er	8	8	Lissa	ajou	s																																						
																											T =																					Auto	• •	۲ C	H1	-22.9	91
					<u></u>		<u> </u>	\cap				_	-			-v					1	•••1			-1						.			\sim				1	~		~				1	 ./			-1				
																											Ţ																										
	n/\m	rv1	ŅγV	γŅ	ηų	Νſ	ŴŶ	γγ	Ψ	٧٧	W	· ·	-~~1	«٦٢	۷١ ا	٧Ŵ	Ŷ١	W	M	'n	N V		v~v		-w-		1															-											
1	, ,																																																				
H																																																					
12																																																					
																					Ē						1					ł										1					ł						Ţ
H1		(1 A		CH2			2.7	V/di																																									Tir	ne		i00 u	
		4.00						39																																									121	KВ		00 1	
$min = \frac{1}{2}$	**** 201 Hz	,		1	/ma	x=	***	*				V	pp=	**	**					Vr	nea	m=	***	**				Vba	ase=	**	***				V	top=	**	**			V	amp	p1=	***	c)(
= 50.2 min= ampl= huty(-)	****				/ma /cm Duty	iean		***					pp= crm ilse	IS=		**				Vc	sde	ev=	*** ** = *	**					nean 0.0		*** Hz					base ycle						'top = 0										ctiv o to	

Figure 24: Speed test (Airtel 4G HBB)

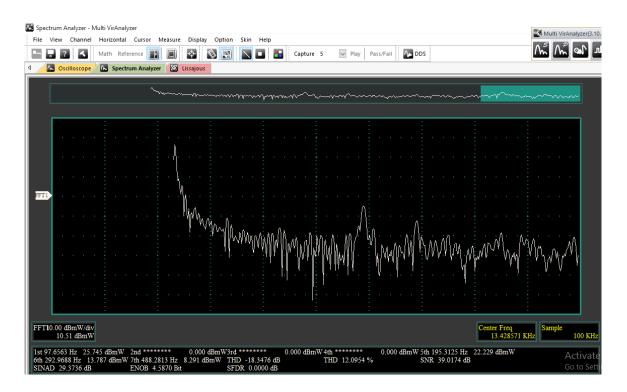


Figure 25: Center Carrier frequency of lower range 13KHz (On LV Line) with harmonic

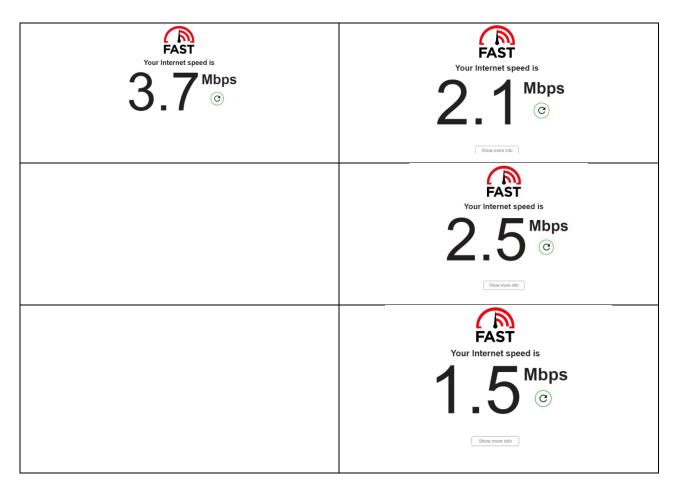
4.1 Summary of Findings

The best modulation OFDM (bits per carrier) is chosen with the goal of maximizing transmission speed while preserving the appropriate bit error rate (BER). DHS MAC offers further flexibility, such as alternative scheduling transmission formats based on impulsive noise and channel impedance. As can be seen, the two layers PHY and MAC cooperate, interact, and share information, resulting in a cross-layer design of the adapters that aims to improve performance. To keep BER at acceptable levels for multimedia services, it is better to reduce throughput (transmission speed).

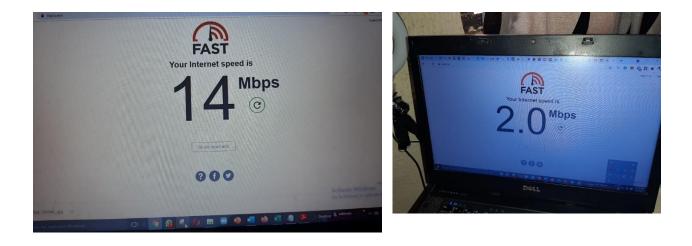
Theses readings were taken between 12am -3pm

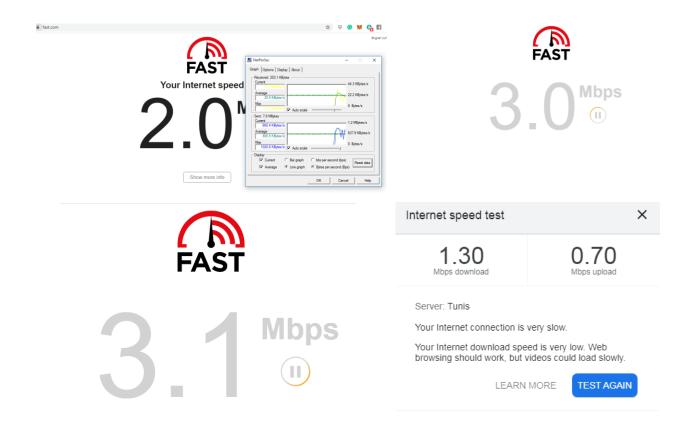
Table 20

Home (Airtel HBB)


Internet	Speed	Distance(m)	Off live (Mbps)	On live (Mbps)
(Mbps)				
17		30	14	3.2
		60	13	3.0
		90	6.4	2.0
		120	5.3	1.8

Internet	Speed	Distance(m)	Off live (Mbps)	On live (Mbps)
(Mbps)				
3.7		30	3.3	2.2
		60	3.1	2.1
		90	2.9	1.5
		120	2.5	0.9
		150	Module pair but	Module pair but
			not data transfer	not data transfer


Office (Galaxy back bone)


Internet	Speed	Distance(m)	Off live (Mbps)	On live (Mbps)
(Mbps)				
16		30	Reading could	2.9
		60	not be taken in	2.2
		90	this mode due to	2.1
		120	office restrictions	Module pair but
				not data transfer
		150		Module pair but
				not data transfer

SCREENSHOTS OF VARIOUS SPEED TEST

Parameters	Results
Speed off LV powerlines	88 Mbps
Speed on LV powerlines	3.2 Mbps
Carrier frequency	13-64KHz
Maximum distance of data transmission	100m
SNR	39.017dB
SINAD (SIgnal-to-Noise and Distortion.)	29.3dB

Table 21: Summary of Speed and SNR

In conclusion the prototype was designed and fabricated, and testing carried out shows a minimum speed of 3MBPS and maximum of 88MBPS.The module can be successfully implemented into a IOT systems, smart grids, machine automation and energy monitoring systems with recommended data rates between 3-5MBps.

FURTHER RESEARCH

The following are further research areas from this work.

- 1. Phase noise (VCO with high spectral purity and harmonic suppression).
- 2. Termination at Domestic distribution board.
- 3. Harmonic suppression techniques.
- 4. Multi carrier modulation for 5G standards.
- 5. Implementation of IoT application for home automation, energy consumption and security.
- 6. Adaptive filtering

OLUSEUN.D.OYELEKE (PI)

DYAJI CHARLES

TALATU ADAM

ALEX ANDREW

08036546874

contactseun@gmail.com

APPENDIX

ADDITIONAL READING TAKEN

100Mbps

C:\iperf>iperf3 -c 192.168.10.100 -w -u -64k -p -i 10 -t2000 -b 100M Connecting to host 192.168.10.100, port 5201 [4] local 192.168.10.101 port 63637 connected to 192.168.10.100 port 5201 [ID] Interval Transfer Bandwidth [4] 0.00-10.00 sec 9.75 MBytes 8.18 Mbits/sec [4] 10.00-20.00 sec 8.12 MBytes 6.82 Mbits/sec [4] 20.00-30.00 sec 8.00 MBytes 6.71 Mbits/sec [4] 30.00-40.00 sec 7.88 MBytes 6.61 Mbits/sec [4] 40.00-50.00 sec 8.25 MBytes 6.92 Mbits/sec [4] 50.00-60.00 sec 8.75 MBytes 7.34 Mbits/sec [4] 60.00-70.00 sec 8.00 MBytes 6.71 Mbits/sec [4] 70.00-80.00 sec 4.88 MBytes 4.09 Mbits/sec [4] 80.00-90.00 sec 0.00 Bytes 0.00 bits/sec [4] 90.00-100.00 sec 0.00 Bytes 0.00 bits/sec [4] 100.00-110.00 sec 0.00 Bytes 0.00 bits/sec [4] 110.00-120.00 sec 0.00 Bytes 0.00 bits/sec [4] 120.00-130.00 sec 0.00 Bytes 0.00 bits/sec [4] 130.00-140.00 sec 0.00 Bytes 0.00 bits/sec [4] 140.00-150.00 sec 0.00 Bytes 0.00 bits/sec [4] 150.00-160.01 sec 0.00 Bytes 0.00 bits/sec [4] 160.01-170.01 sec 0.00 Bytes 0.00 bits/sec [4] 170.01-180.01 sec 256 KBytes 210 Kbits/sec [4] 180.01-190.00 sec 0.00 Bytes 0.00 bits/sec [4] 190.00-200.00 sec 0.00 Bytes 0.00 bits/sec [4] 200.00-210.00 sec 1.00 MBytes 839 Kbits/sec [4] 210.00-220.00 sec 8.75 MBytes 7.34 Mbits/sec [4] 220.00-230.00 sec 7.75 MBytes 6.50 Mbits/sec

[4] 230.00-240.00 sec 7.38 MBytes 6.19 Mbits/sec [4] 240.00-250.00 sec 7.62 MBytes 6.40 Mbits/sec [4] 250.00-260.00 sec 7.38 MBytes 6.19 Mbits/sec [4] 260.00-270.00 sec 7.75 MBytes 6.50 Mbits/sec [4] 270.00-280.00 sec 7.50 MBytes 6.29 Mbits/sec [4] 280.00-290.01 sec 8.38 MBytes 7.02 Mbits/sec [4] 290.01-300.01 sec 7.38 MBytes 6.19 Mbits/sec [4] 300.01-310.00 sec 7.00 MBytes 5.88 Mbits/sec [4] 310.00-320.00 sec 7.75 MBytes 6.50 Mbits/sec [4] 320.00-330.00 sec 9.88 MBytes 8.28 Mbits/sec [4] 330.00-340.00 sec 7.25 MBytes 6.08 Mbits/sec [4] 340.00-350.00 sec 7.50 MBytes 6.29 Mbits/sec [4] 350.00-360.00 sec 8.75 MBytes 7.34 Mbits/sec [4] 360.00-370.00 sec 7.88 MBytes 6.61 Mbits/sec [4] 370.00-380.00 sec 7.25 MBytes 6.08 Mbits/sec [4] 380.00-390.00 sec 7.12 MBytes 5.98 Mbits/sec [4] 390.00-400.00 sec 7.25 MBytes 6.08 Mbits/sec [4] 400.00-410.00 sec 6.25 MBytes 5.24 Mbits/sec [4] 410.00-420.01 sec 2.12 MBytes 1.78 Mbits/sec [4] 420.01-430.00 sec 4.88 MBytes 4.09 Mbits/sec [4] 430.00-440.00 sec 3.00 MBytes 2.52 Mbits/sec [4] 440.00-450.00 sec 4.38 MBytes 3.67 Mbits/sec [4] 450.00-460.01 sec 6.50 MBytes 5.45 Mbits/sec [4] 460.01-470.01 sec 5.75 MBytes 4.82 Mbits/sec [4] 470.01-480.01 sec 6.00 MBytes 5.03 Mbits/sec [4] 480.01-490.00 sec 7.00 MBytes 5.88 Mbits/sec [4] 490.00-500.00 sec 7.88 MBytes 6.61 Mbits/sec [4] 500.00-510.00 sec 8.50 MBytes 7.13 Mbits/sec [4] 510.00-520.00 sec 8.50 MBytes 7.13 Mbits/sec [4] 520.00-530.00 sec 9.12 MBytes 7.66 Mbits/sec [4] 530.00-540.00 sec 7.38 MBytes 6.19 Mbits/sec

[4] 540.00-550.00 sec 6.75 MBytes 5.66 Mbits/sec [4] 550.00-560.00 sec 7.00 MBytes 5.87 Mbits/sec [4] 560.00-570.00 sec 8.12 MBytes 6.82 Mbits/sec [4] 570.00-580.00 sec 8.00 MBytes 6.71 Mbits/sec [4] 580.00-590.00 sec 7.25 MBytes 6.08 Mbits/sec [4] 590.00-600.00 sec 8.25 MBytes 6.92 Mbits/sec [4] 600.00-610.00 sec 6.38 MBytes 5.35 Mbits/sec [4] 610.00-620.00 sec 6.50 MBytes 5.45 Mbits/sec [4] 620.00-630.00 sec 8.12 MBytes 6.82 Mbits/sec [4] 630.00-640.00 sec 8.12 MBytes 6.82 Mbits/sec [4] 640.00-650.00 sec 7.62 MBytes 6.40 Mbits/sec [4] 650.00-660.00 sec 8.25 MBytes 6.92 Mbits/sec [4] 660.00-670.00 sec 6.25 MBytes 5.24 Mbits/sec [4] 670.00-680.00 sec 8.38 MBytes 7.02 Mbits/sec [4] 680.00-690.00 sec 8.12 MBytes 6.82 Mbits/sec [4] 690.00-700.00 sec 6.62 MBytes 5.56 Mbits/sec [4] 700.00-710.00 sec 7.62 MBytes 6.39 Mbits/sec [4] 710.00-720.01 sec 9.00 MBytes 7.55 Mbits/sec [4] 720.01-730.00 sec 7.38 MBytes 6.19 Mbits/sec [4] 730.00-740.00 sec 7.38 MBytes 6.19 Mbits/sec [4] 740.00-750.00 sec 7.88 MBytes 6.61 Mbits/sec [4] 750.00-760.00 sec 7.75 MBytes 6.50 Mbits/sec [4] 760.00-770.01 sec 7.75 MBytes 6.50 Mbits/sec [4] 770.01-780.00 sec 7.62 MBytes 6.40 Mbits/sec [4] 780.00-790.00 sec 7.75 MBytes 6.50 Mbits/sec [4] 790.00-800.00 sec 7.88 MBytes 6.61 Mbits/sec [4] 800.00-810.00 sec 7.25 MBytes 6.08 Mbits/sec [4] 810.00-820.00 sec 6.62 MBytes 5.56 Mbits/sec [4] 820.00-830.00 sec 5.88 MBytes 4.93 Mbits/sec [4] 830.00-840.00 sec 6.12 MBytes 5.14 Mbits/sec [4] 840.00-850.00 sec 7.25 MBytes 6.08 Mbits/sec

[4] 850.00-860.00 sec 7.62 MBytes 6.40 Mbits/sec [4] 860.00-870.00 sec 7.38 MBytes 6.19 Mbits/sec [4] 870.00-880.00 sec 7.38 MBytes 6.19 Mbits/sec [4] 880.00-890.01 sec 7.75 MBytes 6.50 Mbits/sec [4] 890.01-900.01 sec 8.00 MBytes 6.71 Mbits/sec [4] 900.01-910.00 sec 7.00 MBytes 5.88 Mbits/sec [4] 910.00-920.00 sec 8.38 MBytes 7.02 Mbits/sec [4] 920.00-930.00 sec 7.62 MBytes 6.39 Mbits/sec [4] 930.00-940.01 sec 8.38 MBytes 7.02 Mbits/sec [4] 940.01-950.01 sec 7.25 MBytes 6.08 Mbits/sec [4] 950.01-960.01 sec 7.62 MBytes 6.39 Mbits/sec [4] 960.01-970.00 sec 7.25 MBytes 6.09 Mbits/sec [4] 970.00-980.00 sec 6.88 MBytes 5.77 Mbits/sec [4] 980.00-990.00 sec 8.12 MBytes 6.82 Mbits/sec [4] 990.00-1000.00 sec 8.12 MBytes 6.82 Mbits/sec [4] 1000.00-1010.00 sec 7.12 MBytes 5.98 Mbits/sec [4] 1010.00-1020.00 sec 8.00 MBytes 6.71 Mbits/sec [4] 1020.00-1030.00 sec 8.12 MBytes 6.82 Mbits/sec [4] 1030.00-1040.00 sec 7.12 MBytes 5.98 Mbits/sec [4] 1040.00-1050.01 sec 6.75 MBytes 5.66 Mbits/sec [4] 1050.01-1060.00 sec 8.00 MBytes 6.72 Mbits/sec [4] 1060.00-1070.01 sec 8.25 MBytes 6.92 Mbits/sec [4] 1070.01-1080.00 sec 8.88 MBytes 7.45 Mbits/sec [4] 1080.00-1090.00 sec 8.38 MBytes 7.03 Mbits/sec [4] 1090.00-1100.00 sec 7.25 MBytes 6.08 Mbits/sec [4] 1100.00-1110.00 sec 7.88 MBytes 6.61 Mbits/sec [4] 1110.00-1120.00 sec 7.38 MBytes 6.19 Mbits/sec [4] 1120.00-1130.01 sec 7.75 MBytes 6.50 Mbits/sec [4] 1130.01-1140.00 sec 7.62 MBytes 6.40 Mbits/sec [4] 1140.00-1150.00 sec 6.88 MBytes 5.77 Mbits/sec [4] 1150.00-1160.00 sec 7.88 MBytes 6.61 Mbits/sec [4] 1160.00-1170.00 sec 7.38 MBytes 6.19 Mbits/sec
[4] 1170.00-1180.00 sec 8.38 MBytes 7.03 Mbits/sec
[4] 1180.00-1190.00 sec 7.25 MBytes 6.08 Mbits/sec
[4] 1190.00-1200.00 sec 8.38 MBytes 7.02 Mbits/sec
[4] 1200.00-1210.00 sec 4.50 MBytes 3.78 Mbits/sec

C:\Users\LENOVO\Documents\iperf>iperf3 -s -1 10

Server listening on 5201

Accepted connection from 192.168.10.101, port 63636

[5] local 192.168.10.100 port 5201 connected to 192.168.10.101 port 63637

[ID] Interval	Fransfer Bandwidth
[5] 0.00-1.01 sec	964 KBytes 7.84 Mbits/sec
[5] 1.01-2.00 sec	1.23 MBytes 10.4 Mbits/sec
[5] 2.00-3.00 sec	1.13 MBytes 9.47 Mbits/sec
[5] 3.00-4.00 sec	1008 KBytes 8.27 Mbits/sec
[5] 4.00-5.00 sec	997 KBytes 8.16 Mbits/sec
[5] 5.00-6.00 sec	1.03 MBytes 8.64 Mbits/sec
[5] 6.00-7.00 sec	1015 KBytes 8.32 Mbits/sec
[5] 7.00-8.00 sec	883 KBytes 7.23 Mbits/sec
[5] 8.00-9.00 sec	738 KBytes 6.04 Mbits/sec
[5] 9.00-10.00 sec	c 702 KBytes 5.77 Mbits/sec
[5] 10.00-11.00 se	c 902 KBytes 7.38 Mbits/sec
[5] 11.00-12.00 se	c 906 KBytes 7.42 Mbits/sec
[5] 12.00-13.00 se	c 895 KBytes 7.33 Mbits/sec
[5] 13.00-14.00 se	c 781 KBytes 6.39 Mbits/sec
[5] 14.00-15.00 se	c 849 KBytes 6.96 Mbits/sec
[5] 15.00-16.00 se	c 872 KBytes 7.14 Mbits/sec
[5] 16.00-17.00 se	c 868 KBytes 7.11 Mbits/sec

[5] 17.00-18.00	sec	758 KBytes 6.21 Mbits/sec
[5] 18.00-19.00	sec	700 KBytes 5.72 Mbits/sec
[5] 19.00-20.00	sec	801 KBytes 6.56 Mbits/sec
[5] 20.00-21.00	sec	906 KBytes 7.42 Mbits/sec
[5] 21.00-22.01	sec	1.02 MBytes 8.56 Mbits/sec
[5] 22.01-23.01	sec	984 KBytes 8.06 Mbits/sec
[5] 23.01-24.01	sec	816 KBytes 6.69 Mbits/sec
[5] 24.01-25.01	sec	802 KBytes 6.57 Mbits/sec
[5] 25.01-26.01	sec	744 KBytes 6.10 Mbits/sec
[5] 26.01-27.00	sec	752 KBytes 6.19 Mbits/sec
[5] 27.00-28.00	sec	712 KBytes 5.84 Mbits/sec
[5] 28.00-29.00	sec	688 KBytes 5.64 Mbits/sec
[5] 29.00-30.00	sec	704 KBytes 5.76 Mbits/sec
[5] 30.00-31.01	sec	708 KBytes 5.76 Mbits/sec
[5] 31.01-32.00	sec	765 KBytes 6.32 Mbits/sec
[5] 32.00-33.00	sec	634 KBytes 5.20 Mbits/sec
[5] 33.00-34.00	sec	744 KBytes 6.09 Mbits/sec
[5] 34.00-35.00	sec	761 KBytes 6.23 Mbits/sec
[5] 35.00-36.00	sec	787 KBytes 6.45 Mbits/sec
[5] 36.00-37.00	sec	795 KBytes 6.50 Mbits/sec
[5] 37.00-38.00	sec	815 KBytes 6.69 Mbits/sec
[5] 38.00-39.00	sec	1.00 MBytes 8.41 Mbits/sec
[5] 39.00-40.00	sec	992 KBytes 8.14 Mbits/sec
[5] 40.00-41.00	sec	1.02 MBytes 8.54 Mbits/sec
[5] 41.00-42.01	sec	774 KBytes 6.30 Mbits/sec
[5] 42.01-43.00	sec	691 KBytes 5.70 Mbits/sec
[5] 43.00-44.00	sec	792 KBytes 6.49 Mbits/sec
[5] 44.00-45.01	sec	784 KBytes 6.39 Mbits/sec
[5] 45.01-46.00	sec	749 KBytes 6.17 Mbits/sec
[5] 46.00-47.00	sec	830 KBytes 6.79 Mbits/sec
[5] 47.00-48.00	sec	866 KBytes 7.08 Mbits/sec

[5] 48.00-49.00 sec 892 KBytes 7.31 Mbits/sec
[5] 49.00-50.00 sec 1.03 MBytes 8.63 Mbits/sec
[5] 50.00-51.00 sec 1.10 MBytes 9.19 Mbits/sec
[5] 51.00-52.01 sec 903 KBytes 7.39 Mbits/sec
[5] 52.01-53.00 sec 835 KBytes 6.87 Mbits/sec
[5] 53.00-54.00 sec 838 KBytes 6.86 Mbits/sec
[5] 54.00-55.00 sec 936 KBytes 7.65 Mbits/sec
[5] 55.00-56.00 sec 1017 KBytes 8.33 Mbits/sec
[5] 56.00-57.01 sec 964 KBytes 7.87 Mbits/sec
[5] 57.01-58.00 sec 739 KBytes 6.07 Mbits/sec
[5] 58.00-59.00 sec 749 KBytes 6.15 Mbits/sec
[5] 59.00-60.00 sec 896 KBytes 7.33 Mbits/sec
[5] 60.00-61.00 sec 886 KBytes 7.27 Mbits/sec
[5] 61.00-62.00 sec 842 KBytes 6.90 Mbits/sec
[5] 62.00-63.00 sec 771 KBytes 6.31 Mbits/sec
[5] 63.00-64.00 sec 808 KBytes 6.62 Mbits/sec
[5] 64.00-65.00 sec 771 KBytes 6.31 Mbits/sec
[5] 65.00-66.00 sec 788 KBytes 6.46 Mbits/sec
[5] 66.00-67.00 sec 818 KBytes 6.69 Mbits/sec
[5] 67.00-68.01 sec 816 KBytes 6.66 Mbits/sec
[5] 68.01-69.00 sec 802 KBytes 6.61 Mbits/sec
[5] 69.00-70.00 sec 852 KBytes 6.98 Mbits/sec
[5] 70.00-71.00 sec 868 KBytes 7.09 Mbits/sec
[5] 71.00-72.00 sec 973 KBytes 7.99 Mbits/sec
[5] 72.00-73.00 sec 906 KBytes 7.42 Mbits/sec
[5] 73.00-74.01 sec 850 KBytes 6.91 Mbits/sec
[5] 74.01-75.01 sec 1.00 MBytes 8.42 Mbits/sec
[5] 75.01-176.73 sec 128 KBytes 10.3 Kbits/sec
[5] 176.73-179.46 sec 0.00 Bytes 0.00 bits/sec
[5] 179.46-180.02 sec 0.00 Bytes 0.00 bits/sec
[5] 180.02-180.46 sec 0.00 Bytes 0.00 bits/sec

[5] 180.46-181.09 sec 0.00 Bytes 0.00 bits/sec