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A Main Challenge to Cyber Security Science

“A major difference between a "well developed" 
science such as physics and some of the less 
"well-developed" sciences such as psychology or 
sociology is the degree to which things are 
measured.” 

: Fred S. Roberts



Metrics Defined
The National Institute of Standards 

and Technology (NIST) define metrics 
as tools designed to facilitate decision-
making and improve performance and 
accountability through collection, 
analysis, and reporting of relevant 
performance-related data.
Metrics are simply a standard or system 

of measurement. 
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Security Metrics Defined
Therefore, security metrics is a 

standard for measuring security
Security metrics has become a standard 

term when referring to security level, 
security performance, security 
indicators or security strength
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Why Security Metrics?
 Capability Maturity Model for Software 

Engineering used to measure quality fails to 
address  security issues

 Consequently, security flaws are identified only at 
the later stages of the application lifecycle

 And thus much greater cost to fix and high 
maintenance cost

 With the Emerging ICT-based Economy, there is 
greater need for Security Metrics fully Integrated 
into Software Developmental Stages for Secured 
Deliverables
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Security Metrics Benefits

The benefits involves:
risk management, 
software security assurance, 
security testing, 
security performance, 
adaptive security monitoring and
intrusion detection and prevention
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Categories of Security Metrics

Strategic support :- Decision making, such 
as program planning, resource allocation, 
and product and service selection. 

Quality assurance :- Elimination of 
vulnerabilities, particularly during code 
production 

Tactical oversight :- Monitoring and 
reporting of the security status 
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Aspects of Security Measurement

Correctness and Effectiveness
Leading Versus Lagging Indicators
Organizational Security Objectives
Qualitative and Quantitative Properties
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Secure Software means
Secure software cannot be 

intentionally subverted or forced to 
fail. 
It remains correct and predictable 

in spite of intentional efforts to 
compromise that dependability.
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Secure Software means…
Continue operating correctly in 

the presence of most attacks
Isolate, contain, and limit the 

damage resulting from any 
failures
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Attributes of Secure Software
 Exploitable faults and other weaknesses are avoided 
 The likelihood is greatly reduced or eliminated that 

malicious developers can intentionally implant 
exploitable faults and weaknesses or malicious logic 
into the software.

 Attack-resistant or attack-tolerant, and attack-
resilient.

 The interactions among components within the 
software-intensive system, and between the system and 
external entities, do not contain exploitable 
weaknesses.
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Metrics Vs Measurement
Measurement Metrics

 Measurements provide 
single-point-in-time views 
of specific, discrete factors

 Measurements are 
generated by counting

 Measurements are 
objective raw data

 Metrics are derived by 
comparing to a 
predetermined baseline 
two or more measurements 
taken over time

 Metrics are generated from 
analysis

 Metrics are either objective 
or subjective human 
interpretations of those 
data
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GOOD METRICS
Good metrics are those that are 

SMART, i.e. 
Specific, 
Measurable, 
Attainable,
 Repeatable,
Time-dependent
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Metric Types/examples
Process Metrics

Information about the 
processes themselves. 
Evidence of maturity.

Vulnerability Metrics
Metrics about application 
vulnerabilities themselves

Management
Metrics specifically 
designed for senior 
management

Examples
 Secure coding standards in use
 Avg. time to correct critical vulnerabilities

Examples
 By vulnerability type
 By occurrence within a software development 

life cycle phase

Examples
 % of applications that are currently security 

“certified” and accepted by business partners

 Trending: critical unresolved, accepted risks
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Examples of Application Security Metrics

Process Metrics
 Is a SDL Process used? Are 

security gates enforced?
 Secure application 

development standards and 
testing criteria?

 Security status of a new 
application at delivery (e.g., % 
compliance with organizational 
security standards and 
application system 
requirements).

 Existence of developer support 
website (FAQ's, Code Fixes, 
lessons learned, etc.)?

 % of developers trained, using 
organizational security best 
practice technology, 
architecture and processes

Management Metrics
 % of applications rated 

“business-critical” that have 
been tested.

 % of applications which 
business partners, clients, 
regulators require be 
“certified”.

 Average time to correct 
vulnerabilities (trending).

 % of flaws by lifecycle phase.
 % of applications using 

centralized security services.
 Business impact of critical 

security incidents.
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Examples of Application Security Metrics

Vulnerability Metrics
 Number and criticality of vulnerabilities found.
 Most commonly found vulnerabilities.
 Reported defect rates based on security testing (per 

developer/team, per application)
 Root cause of “Vulnerability Recidivism”.
 % of code that is re-used from other products/projects*

 % of code that is third party (e.g., libraries)*
 Results of source code analysis**:

 Vulnerability severity by project, by organization
 Vulnerabilities by category by project, by organization
 Vulnerability +/- over time by project
 % of flaws by lifecycle phase (based on when testing occurs)



Value of Security Metrics
Accepted Management principle says 

that an activity cannot be managed if it 
cannot be measured.
Metrics can be an effective tool for 

security managers
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Security Managers…
 Security managers can use metrics to 
 discern the effectiveness of various components of 

their security programs, 
 the security of a specific system, 
 product or process, 
 and the ability of staff or departments within an 

organization to address security issues for which they 
are responsible.

 identify the level of risk in not taking a given action, 
and in that way provide guidance in prioritizing 
corrective actions.
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Security Managers…
 to raise the level of security awareness within the 

organization
 With knowledge gained through metrics, security 

managers can better  answer hard questions from their 
executives and others, such as:

 Are we more secure today than we were before?
 How do we compare to others in this regard?
 Are we secure enough?
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Security Metrics Development
 Define the metrics program goal(s) and objectives
 Decide which metrics to generate
 Develop strategies for generating the metrics
 Establish benchmarks and targets
 Determine how the metrics will be reported
 Create an action plan and act on it, and
 Establish a formal program review/refinement 

cycle
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Security-aware Software Industry
 For the software industry, the key to meeting demand 

for improved security, is to implement repeatable 
processes that reliably deliver measurably improved 
security

 Thus, there must be a transition to a more stringent 
software development process that greatly focuses on 
security

 Goal: minimize the number of security vulnerabilities 
in design, implementation, and documentation 

 Identify and remove vulnerabilities in the development 
lifecycle as early as possible!!!

21



Secure Software Development
Three essential components
 Repeatable process
 Engineer Education
 Metrics and Accountability

 SDL – Secure Development Lifecycle
 Used along with traditional/current software 

development lifecycle/techniques in order to 
introduce security at every stage of software 
development 
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Secure Dev Lifecycke - PHASES

Design Implementation Verification Deployment MaintenanceRequirements
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SDL – Requirements Phase
 Develop Security Requirements

 Security Requirements of a system/application must be 
developed along with any other requirements 
requirements   (e.g. functional, legal, user, etc)

 Risk analysis
 Identify all the assets at risk
 Identify all the threats 

 Develop security policies
 Used as guidelines for requirements

 Develop security metrics
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SDL – Design Phase
 At this stage all design decisions are made, about

 Software Architecture
 Software components 
 Programming languages 
 Interfaces
 …

 Develop documentation
 Confirm that all requirements are followed and met
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SDL – Design Phase…
 Treat Models
 Input Data Types
 Security Use Cases
 Security Architecture
 Defense in Layers / Separate Components / Least 

Privilege 
 Tool

 SecureUML – Secure Unified Modeling Language 
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SDL – Implementation Phase
 This is the stage where coding is done.
 To produce secure software

 Coding Standards
 Centralized Security Modules
 Secure builds and configurations

 Known security vulnerabilities - use good programming 
practices.  Be aware of
 Race conditions
 Buffer overflow 
 Format string 
 Malicious logic
 …

 Follow Design & Develop Documentation 
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SDL – Implementation Phase…

“Vulnerability-free” Application

Robust Programming Practices
Good design and coding 

practices

Design and implementation of 
security features. 

From the Requirements
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SDL – Verification Phase
Testing of the code developed in 

the previous stage
Cleared security tests
Security vulnerability tracking
Code Reviews
Documentation
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SDL – Release Phase
Secure Management 
Procedures
Monitoring Requirements
Security Upgrade Procedures
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SDL – Response Phase
 Causes:

 Costumer feedback
 Security incident details and vulnerability reports
 …

 Types of maintenance
 Need to introduce new functionality
 Need to upgrade to keep up with technology
 Discovered vulnerability 
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Reality
 Every security vulnerability / flaw overlooked in an 

earlier phase will end-up at later phase[s]

 Resulting into greater
 Cost
 Time 
of the software development and/or maintenance
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Microsoft – Case Study
SD3 + C

 Secure by Design
 Software designed and implemented to “protect” 

itself and its information
 Secure by Default

 Accept the fact that software will not achiever 
perfect security

 To minimize the harm when vulnerabilities 
exploited, software’s default state should promote 
security (ex. least necessary privileges) 

 Secure in Deployment
 Software accompanied by tools and guidance to 

assist secure use
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SDL @ Microsoft

Requirements Design Implementation Verification Release Response

Inception
- Security Advisor 
assigned

- Ensure security
milestones are
understood 

- Identify security 
requirements

Design & Threat Modeling
- Design guidelines documented 
- Threat models produced
- Security architecture documented
-Threat model and design review 
completed

Security Push
-Threat models 
reviewed

- Code reviewed
- Attack testing
- New threats evaluated
- Security testing 

completed

Security Response
Feedback
- Tools/processes 
evaluated

- Postmortems 
completed

Guidelines & Best 
Practices 
- Coding and test
standards

- Test plans developed
and executed

- Tools used 

Final Security Review
- Threat models reviewed
- Unfixed bugs reviewed  
- New bugs reviewed 
- Penetration testing 
completed 

- Documentation achieved
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Opportunities for Metrics - Secure 
Development Life Cycle  (SDL)

Secure questions
during interviews

Concept Designs
Complete

Test plans
Complete

Code
Complete

Deploy Post
Deployment

Threat
analysis

Security
Review

Team member
training

Data mutation
& Least Priv
Tests

Review old defects 
Check-ins checked
Secure coding guidelines
Use tools

Security push/audit

= on-going

Learn & 
Refine

External 
review

Source: Microsoft

Were software assurance activities conducted at each lifecycle phase?
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SDL – Requirements Phase @ Microsoft

 Product and central security teams assign 
“security buddy” – security advisor
 Point of contact / resources / guide
 Review plans / recommendations / resources

 Product team considers 
 How security will be integrated into the 

development process
 Key security objectives 

 Documentation

Requirements Design Implementation Verification Release Response
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SDL – Design Phase @ 
Microsoft

 Define security architecture and design 
guidelines

 Document the elements of the software attack 
surface

 Conduct threat modeling

 Define supplemental ship criteria

Requirements Design Implementation Verification Release Response
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SDL Implementation Phase @ 
Microsoft

 Apply coding and testing standards 

 Apply fuzzing tools 
 Supplies structured but invalid inputs

 Apply static-analysis code scanning tools

 Conduct code reviews

Requirements Design Implementation Verification Release Response
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SDL – Verification Phase @ 
Microsoft

 “Beta” testing stage

 “Security push” 
 security code reviews beyond ones completed in 

implementation phase
 Testing of high priority code
 Trying to “break” the code

Requirements Design Implementation Verification Release Response
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SDL – Release Phase @ 
Microsoft

 During the release, software is subject to Final 
Security Review [FSR]

 The goal of FSR is to determine whether, from 
security viewpoint, the software is ready to be 
delivered to costumers

 Not pass / fail
 Goal is to find every remaining security 

vulnerability in software
 If found, revisit all the preceding phases and fix the 

root problem
 Conducted by central security team

Requirements Design Implementation Verification Release Response



41

 p    
Microsoft

 Despite use of SDL, resulting software is not 
vulnerability free; and even if it could be so, new 
attacks would be possible 

 Evaluation of reports 

 Development of patches and security updates

Requirements Design Implementation Verification Release Response
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SDL @ Microsoft
 Mandatory Application of the SDL

 Mandatory Education

 Metrics for Product Teams

 The Central Security Team
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Thank you very much                  
Questions?????

Contact Information: 
mail: ssopam@gmail.com
smisra@futminna.edu.ng
cell number:07030851086
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