
Sanjay Misra
Prof of Computer Engineering

Head ,Department of Cyber Security Science
Federal University of Technology,Minna,Nigeria

1

2

A Main Challenge to Cyber Security Science

“A major difference between a "well developed"
science such as physics and some of the less
"well-developed" sciences such as psychology or
sociology is the degree to which things are
measured.”

: Fred S. Roberts

Metrics Defined
The National Institute of Standards

and Technology (NIST) define metrics
as tools designed to facilitate decision-
making and improve performance and
accountability through collection,
analysis, and reporting of relevant
performance-related data.
Metrics are simply a standard or system

of measurement.
3

Security Metrics Defined
Therefore, security metrics is a

standard for measuring security
Security metrics has become a standard

term when referring to security level,
security performance, security
indicators or security strength

4

Why Security Metrics?
 Capability Maturity Model for Software

Engineering used to measure quality fails to
address security issues

 Consequently, security flaws are identified only at
the later stages of the application lifecycle

 And thus much greater cost to fix and high
maintenance cost

 With the Emerging ICT-based Economy, there is
greater need for Security Metrics fully Integrated
into Software Developmental Stages for Secured
Deliverables

5

Security Metrics Benefits

The benefits involves:
risk management,
software security assurance,
security testing,
security performance,
adaptive security monitoring and
intrusion detection and prevention

6

Categories of Security Metrics

Strategic support :- Decision making, such
as program planning, resource allocation,
and product and service selection.

Quality assurance :- Elimination of
vulnerabilities, particularly during code
production

Tactical oversight :- Monitoring and
reporting of the security status

7

Aspects of Security Measurement

Correctness and Effectiveness
Leading Versus Lagging Indicators
Organizational Security Objectives
Qualitative and Quantitative Properties

8

Secure Software means
Secure software cannot be

intentionally subverted or forced to
fail.
It remains correct and predictable

in spite of intentional efforts to
compromise that dependability.

9

Secure Software means…
Continue operating correctly in

the presence of most attacks
Isolate, contain, and limit the

damage resulting from any
failures

10

Attributes of Secure Software
 Exploitable faults and other weaknesses are avoided
 The likelihood is greatly reduced or eliminated that

malicious developers can intentionally implant
exploitable faults and weaknesses or malicious logic
into the software.

 Attack-resistant or attack-tolerant, and attack-
resilient.

 The interactions among components within the
software-intensive system, and between the system and
external entities, do not contain exploitable
weaknesses.

11

Metrics Vs Measurement
Measurement Metrics

 Measurements provide
single-point-in-time views
of specific, discrete factors

 Measurements are
generated by counting

 Measurements are
objective raw data

 Metrics are derived by
comparing to a
predetermined baseline
two or more measurements
taken over time

 Metrics are generated from
analysis

 Metrics are either objective
or subjective human
interpretations of those
data

12

GOOD METRICS
Good metrics are those that are

SMART, i.e.
Specific,
Measurable,
Attainable,
 Repeatable,
Time-dependent

13

14

Metric Types/examples
Process Metrics

Information about the
processes themselves.
Evidence of maturity.

Vulnerability Metrics
Metrics about application
vulnerabilities themselves

Management
Metrics specifically
designed for senior
management

Examples
 Secure coding standards in use
 Avg. time to correct critical vulnerabilities

Examples
 By vulnerability type
 By occurrence within a software development

life cycle phase

Examples
 % of applications that are currently security

“certified” and accepted by business partners

 Trending: critical unresolved, accepted risks

15

Examples of Application Security Metrics

Process Metrics
 Is a SDL Process used? Are

security gates enforced?
 Secure application

development standards and
testing criteria?

 Security status of a new
application at delivery (e.g., %
compliance with organizational
security standards and
application system
requirements).

 Existence of developer support
website (FAQ's, Code Fixes,
lessons learned, etc.)?

 % of developers trained, using
organizational security best
practice technology,
architecture and processes

Management Metrics
 % of applications rated

“business-critical” that have
been tested.

 % of applications which
business partners, clients,
regulators require be
“certified”.

 Average time to correct
vulnerabilities (trending).

 % of flaws by lifecycle phase.
 % of applications using

centralized security services.
 Business impact of critical

security incidents.

16

Examples of Application Security Metrics

Vulnerability Metrics
 Number and criticality of vulnerabilities found.
 Most commonly found vulnerabilities.
 Reported defect rates based on security testing (per

developer/team, per application)
 Root cause of “Vulnerability Recidivism”.
 % of code that is re-used from other products/projects*

 % of code that is third party (e.g., libraries)*
 Results of source code analysis**:

 Vulnerability severity by project, by organization
 Vulnerabilities by category by project, by organization
 Vulnerability +/- over time by project
 % of flaws by lifecycle phase (based on when testing occurs)

Value of Security Metrics
Accepted Management principle says

that an activity cannot be managed if it
cannot be measured.
Metrics can be an effective tool for

security managers

17

Security Managers…
 Security managers can use metrics to
 discern the effectiveness of various components of

their security programs,
 the security of a specific system,
 product or process,
 and the ability of staff or departments within an

organization to address security issues for which they
are responsible.

 identify the level of risk in not taking a given action,
and in that way provide guidance in prioritizing
corrective actions.

18

Security Managers…
 to raise the level of security awareness within the

organization
 With knowledge gained through metrics, security

managers can better answer hard questions from their
executives and others, such as:

 Are we more secure today than we were before?
 How do we compare to others in this regard?
 Are we secure enough?

19

Security Metrics Development
 Define the metrics program goal(s) and objectives
 Decide which metrics to generate
 Develop strategies for generating the metrics
 Establish benchmarks and targets
 Determine how the metrics will be reported
 Create an action plan and act on it, and
 Establish a formal program review/refinement

cycle

20

Security-aware Software Industry
 For the software industry, the key to meeting demand

for improved security, is to implement repeatable
processes that reliably deliver measurably improved
security

 Thus, there must be a transition to a more stringent
software development process that greatly focuses on
security

 Goal: minimize the number of security vulnerabilities
in design, implementation, and documentation

 Identify and remove vulnerabilities in the development
lifecycle as early as possible!!!

21

Secure Software Development
Three essential components
 Repeatable process
 Engineer Education
 Metrics and Accountability

 SDL – Secure Development Lifecycle
 Used along with traditional/current software

development lifecycle/techniques in order to
introduce security at every stage of software
development

22

Secure Dev Lifecycke - PHASES

Design Implementation Verification Deployment MaintenanceRequirements

23

SDL – Requirements Phase
 Develop Security Requirements

 Security Requirements of a system/application must be
developed along with any other requirements
requirements (e.g. functional, legal, user, etc)

 Risk analysis
 Identify all the assets at risk
 Identify all the threats

 Develop security policies
 Used as guidelines for requirements

 Develop security metrics
24

SDL – Design Phase
 At this stage all design decisions are made, about

 Software Architecture
 Software components
 Programming languages
 Interfaces
 …

 Develop documentation
 Confirm that all requirements are followed and met

25

SDL – Design Phase…
 Treat Models
 Input Data Types
 Security Use Cases
 Security Architecture
 Defense in Layers / Separate Components / Least

Privilege
 Tool

 SecureUML – Secure Unified Modeling Language

26

SDL – Implementation Phase
 This is the stage where coding is done.
 To produce secure software

 Coding Standards
 Centralized Security Modules
 Secure builds and configurations

 Known security vulnerabilities - use good programming
practices. Be aware of
 Race conditions
 Buffer overflow
 Format string
 Malicious logic
 …

 Follow Design & Develop Documentation
27

SDL – Implementation Phase…

“Vulnerability-free” Application

Robust Programming Practices
Good design and coding

practices

Design and implementation of
security features.

From the Requirements

28

SDL – Verification Phase
Testing of the code developed in

the previous stage
Cleared security tests
Security vulnerability tracking
Code Reviews
Documentation

29

SDL – Release Phase
Secure Management
Procedures
Monitoring Requirements
Security Upgrade Procedures

30

SDL – Response Phase
 Causes:

 Costumer feedback
 Security incident details and vulnerability reports
 …

 Types of maintenance
 Need to introduce new functionality
 Need to upgrade to keep up with technology
 Discovered vulnerability

31

Reality
 Every security vulnerability / flaw overlooked in an

earlier phase will end-up at later phase[s]

 Resulting into greater
 Cost
 Time
of the software development and/or maintenance

32

33

Microsoft – Case Study
SD3 + C

 Secure by Design
 Software designed and implemented to “protect”

itself and its information
 Secure by Default

 Accept the fact that software will not achiever
perfect security

 To minimize the harm when vulnerabilities
exploited, software’s default state should promote
security (ex. least necessary privileges)

 Secure in Deployment
 Software accompanied by tools and guidance to

assist secure use

34

SDL @ Microsoft

Requirements Design Implementation Verification Release Response

Inception
- Security Advisor
assigned

- Ensure security
milestones are
understood

- Identify security
requirements

Design & Threat Modeling
- Design guidelines documented
- Threat models produced
- Security architecture documented
-Threat model and design review
completed

Security Push
-Threat models
reviewed

- Code reviewed
- Attack testing
- New threats evaluated
- Security testing

completed

Security Response
Feedback
- Tools/processes
evaluated

- Postmortems
completed

Guidelines & Best
Practices
- Coding and test
standards

- Test plans developed
and executed

- Tools used

Final Security Review
- Threat models reviewed
- Unfixed bugs reviewed
- New bugs reviewed
- Penetration testing
completed

- Documentation achieved

35

Opportunities for Metrics - Secure
Development Life Cycle (SDL)

Secure questions
during interviews

Concept Designs
Complete

Test plans
Complete

Code
Complete

Deploy Post
Deployment

Threat
analysis

Security
Review

Team member
training

Data mutation
& Least Priv
Tests

Review old defects
Check-ins checked
Secure coding guidelines
Use tools

Security push/audit

= on-going

Learn &
Refine

External
review

Source: Microsoft

Were software assurance activities conducted at each lifecycle phase?

36

SDL – Requirements Phase @ Microsoft

 Product and central security teams assign
“security buddy” – security advisor
 Point of contact / resources / guide
 Review plans / recommendations / resources

 Product team considers
 How security will be integrated into the

development process
 Key security objectives

 Documentation

Requirements Design Implementation Verification Release Response

37

SDL – Design Phase @
Microsoft

 Define security architecture and design
guidelines

 Document the elements of the software attack
surface

 Conduct threat modeling

 Define supplemental ship criteria

Requirements Design Implementation Verification Release Response

38

SDL Implementation Phase @
Microsoft

 Apply coding and testing standards

 Apply fuzzing tools
 Supplies structured but invalid inputs

 Apply static-analysis code scanning tools

 Conduct code reviews

Requirements Design Implementation Verification Release Response

39

SDL – Verification Phase @
Microsoft

 “Beta” testing stage

 “Security push”
 security code reviews beyond ones completed in

implementation phase
 Testing of high priority code
 Trying to “break” the code

Requirements Design Implementation Verification Release Response

40

SDL – Release Phase @
Microsoft

 During the release, software is subject to Final
Security Review [FSR]

 The goal of FSR is to determine whether, from
security viewpoint, the software is ready to be
delivered to costumers

 Not pass / fail
 Goal is to find every remaining security

vulnerability in software
 If found, revisit all the preceding phases and fix the

root problem
 Conducted by central security team

Requirements Design Implementation Verification Release Response

41

 p
Microsoft

 Despite use of SDL, resulting software is not
vulnerability free; and even if it could be so, new
attacks would be possible

 Evaluation of reports

 Development of patches and security updates

Requirements Design Implementation Verification Release Response

42

SDL @ Microsoft
 Mandatory Application of the SDL

 Mandatory Education

 Metrics for Product Teams

 The Central Security Team

43

Thank you very much
Questions?????

Contact Information:
mail: ssopam@gmail.com
smisra@futminna.edu.ng
cell number:07030851086

mailto:ssopam@gmail.com�
mailto:smisra@futminna.edu.ng�

	SECURITY METRICS�for�Software Development in a Emerging Economy
	Slide Number 2
	Metrics Defined
	Security Metrics Defined
	Why Security Metrics?
	Security Metrics Benefits
	Categories of Security Metrics
	Aspects of Security Measurement
	Secure Software means
	Secure Software means…
	Attributes of Secure Software
	Metrics Vs Measurement
	GOOD METRICS
	 Metric Types/examples
	Slide Number 15
	Examples of Application Security Metrics
	Value of Security Metrics
	Security Managers…
	Security Managers…
	Security Metrics Development
	Security-aware Software Industry
	Secure Software Development
	Secure Dev Lifecycke - PHASES
	SDL – Requirements Phase
	SDL – Design Phase
	SDL – Design Phase…
	SDL – Implementation Phase
	SDL – Implementation Phase…
	SDL – Verification Phase
	SDL – Release Phase
	SDL – Response Phase
	Reality
	Microsoft – Case Study
	SDL @ Microsoft
	Slide Number 35
	SDL – Requirements Phase @ Microsoft
	SDL – Design Phase @ Microsoft
	SDL – Implementation Phase @ Microsoft
	SDL – Verification Phase @ Microsoft
	SDL – Release Phase @ Microsoft
	SDL – Response Phase @ Microsoft
	SDL @ Microsoft
	 ������	Thank you very much 		Questions?????�Contact Information: �mail: ssopam@gmail.com�smisra@futminna.edu.ng�cell number:07030851086��

